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HW #5

Harmonic Oscillator

(@)

. . . 2 .
We rewrite the Hamiltonian H = - + %mu)2 xPusing a =/ 2% (x+i i), at :,/ 5 (x—i-£-). We first calculate
T mw _ p _ nmw 2 _ 1 _ mw p?
a a= oy ()C lmw)(x+ w)_ [ ()C mw[p’ ]+m2w2)_ ( mzwz)'
Therefore,
hwa a= %mwzxz——hw+ o
m

and hence H =iw(a’ a + 2).

(b)

The ground state condition a | 0) = 0 can be written in the position representation as

(xlal0y= (x| 22 (x+i-£)|0) =/ 22 (x+i-= 2 L)(x|0)=0,
and hence
(x+ 2= L)) =0

This equation can be solved easﬂy and we find

wo(x) — Ne—mwxz/Zh .
To normalize the wave function, we compute

foo (e—mwxz/lh)z dx= [ % )

—00
Therefore, the correctly normalized ground state wave function is
/4 _

wo(x): l:;)) mwxz/Zh.

The shape of the wave function is

1/4

Yo[x_] := (%) Emox?/2n
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Plot[yo[x] /. (Mm> 1, w>1, A1}, {x, -3, 3}]

- Graphics -

()

The first excited state is given by | 1) = a’ |0), and its position representation by

(x| 1) =(xla" |0y =/ 22 (x—i—= 2 L)(x|0)

mw 1

B (¢ oy x) (22 rmoien) o (el fae ) 4 pmmor e

Its shape is

1/4
il i= (=) 22 2xgmeriian
- wh 2h

Plot[y;[x] /. {m>1, w>1, A1}, {x, -3, 3}]

- Graphics -

Check that it is properly normalized:

) . mo
Integrate[z[rl [x]°, {x, —©, ©}, Assumptions -> Re[T] > 0]
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The second excited state is given by V2 | 2)=a" | 1), and its position representation by

mw

(x12)= 7= (xld" [0) = 7= [ 57 (—igg 40 (I D)

mw i dx

Its shape is

si Lif 1 mw v h DLy
impli Y[E EYY (x I[X]_m_w [¥1[x], x])]

xzu
e zr (2mx?w-h) (Be)H*

JZ e n

sz

e (2mx?w-h) (22)"*
V2 nit

Plot[y,[x] /. (m> 1, w>1, A> 1}, {x, -3, 3}]

Y [x_] 2=

- Graphics -

Check that it is properly normalized:

) . mo
Integrate[z[rz [x]°, {x, —©, ©}, Assumptions -> Re[T] > 0]

(@)

From the definitions of the annihilation and creation operators, we can solve for x,

h
2mw

(a+a).
Starting with the expectation values,

X =

() =nlx|n) =y 5 (nla+a’|n)

:\/% <n|(\/;|n—1>+\/n+l |n+1> =0

because of the orthonormality of the Hamiltonian eigenstates {n | m) = 0, , -

Moving on to the variance,
L2 . .
() = <n|(a+a’) |n>= "_nla"a+aa’|n),

2mw 2mw

=" (n|2N+[a, a']|n)=— 2n+1).

2mw 2mw
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(e)

From the definitions of the annihilation and creation operators, we can solve for p,
p=-i —h"zm (a—a").
Together with the expression for x from the previous problem, you can easily verify [x, p] = i%. Starting with the expecta-

tion values,

(P=@lplny=—i\ 222 (nla-d' |n)=0.

Moving on to the variance,

mw %2 mw + +
(pz)z—h2 <n|(a—a) |n>=h2 (n|la"a+aa' |n),
=129 (n|2N +[a, a']|n) = 222 2n+1).

Therefore,
f
Ax)(Ap)=5Q2n+1).
The ground state n = 0 is a minimum uncertainty state, while the excited states have larger uncertainties.
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(7)

There are many ways to show this.

First of all, using the relation a |n)=vn+1 | n+ 1), we can show that

(a%)" |0 =\/F |n
by recursion. It obviously holds for n = 1. If it holds for n, the n + 1-th one is

@)™ |O =a' (@) 10)=da" Vn! |n =vVn! Vn+1 |n+ =vVm+ 1) |n + 1), and it holds again. Therefore, it
holds for all 7.

. .. _ o pn PN L. _ o0 Iz
Using the definition | f) = Z (@) |O , we can write itas | f) = ano i |n . Then

=3, 3 Vo

where the summation is now taken only fromi=1 because i =0 term vanishes by a | 0) = 0. Continuing on,

_ oo fn _ _ fm+l
alf B Zn:l ‘/(”—1)' Zm 0 \/m'

where the dummy variable was chgned tom=n-1. Pulhng one factor of f ouf of the sum,

alfy=fy, d=m=ris).

Another way to show the same result is by first showing the relation
w\n aon—1
la, (a") ] =n(a")
It obviously holds for n = 1. If it holds for n, the n + 1-th one is
. n+l Loan B L \n . N
[a. @) ] = la, a"@")"] = [a, a"](@")" +a'[a, (@]
= @) +a" n@")" = @n+1)(@)""
and hence it holds as well. Therefore, it holds for any 7.

. n

Starting with the definition | f) = Zw_o ﬁ—, (@) |0),

alf :aziof_ 0 :_Zio %[ ’

Here, we used the fact a | 0)=0. Using the relation shown above,

alfy= " L@y o)=Y @) o),

where the summatlon is now taken only from i = 1 because i = 0 term vanishes by [a, 1] = 0. Changing the dummy variable
tom=n-1,

alfy=3 Le@[o)=f), Lr@)"|o)=fIf),




HW5.nb 6

(9)

Using the result from (d),

F1x1 0 = f|N 7 @+a)|f) =y 5o P+ 1) = 725 2Re(D.
Here, we used the fact (f |a’ = (f| f*, obtained by taking the hermitian conjugate of a| f) = f| f). Similarly, using the
result from (e),

FIp1h ={f|-iV 25 @-a)|f)==iy 242 (£ =)=y 252 21m(p).
Now on the variance,

FI121) = (| 52— (@+a') | f) = 2= (f|a® +aa" +a' a+ @) |f)

= S (f|@® +1a, a'1+2a" a+ (@) | f)= 2= (142 f+(F))

= 2 ((f+ )+ 1)

and hence
Ax)? =5,
Similarly,

<f|P2|f>=<f|_hl%w(a—a+)2|f>=hl%(ﬂ—az+aa++a+a—(0+)2|f>
=288 (f|-a* +a, d'1+2a"a— (@) | f) = 252 <2 + 142 f=(f))
=25 U=+

and hence
2 hmw
Ap)y =—5—.
Therefore,

f
Ax)Ap) =7
and hence the coherent state is a minimum uncertainty state for any f.

(h)

~iHifh | —iha(nt12)1/h | —iwn+1/2) 1

The Schrodinger equation gives |n, ) =e n)=e n)=e |n). Using what we showed above,

(o]
_ f” . . . .
| f) = ano T |n , its time evolution is

_ —iHyn N\ _Z“’ I —iwn+1/2) 1
PRI HCEDIE
= N7 gy
ano Vn!

where the coherent state in the last expression has the eigenvalue a | f e7'?) = fe™“"| fe™“"). The exectation value of the

position operator is

<f, t|x|f, t) — eim/z <fe—iwt |x|fe—iwt>e—iwt/2 — <fe—iwt [ 212(» (a +a+) |fe—iwt>

=\ 3 (feT @+ fr e (fei@t | fe )y = \| 5= 2 (Re(f) cosw ¢ + Im(f) sinw ) (f, 1| f, 1)
Therefore, the expectation value is
(xy (r) = LD~ f 5 (Re(f) cos w i+ Im(f) sinw 1),

(falfa 2mw
and shows the oscillatory behavior just like the classical solution.

n e—iwt/2 - |fe—iwt e—iwt/Z
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(i)

The Heisenberg equation of motion is
P _ pP>1_ 2 p
lhwx—[x,H]—[x, m]—lh;,
ihipz [p, Hl =[p me2x2] =—itmw?x
di ’ ) :
There are many ways to solve these coupled equations. One way is to use the exponential of a matrix as Daniel explained in
the section. Write the equations in the matrix form,

q (Mmwxy) wp 3 0 1\y/ymwx
W( p )_(—mwzx)_w(—l O)( p )
Therefore,
maowx 0 —iy\. mwx . mwx
( ) )(r) =exp(( Do );m)( ) )(0) = exp(c lwt)( ) )(0).
Here, 0, is one of the Pauli matrices. The exponential factor can be worked out using its Taylor expansion,
exp(or iwt) = Yo, o " iwt).

It is easy to check that 0,% =1, and hence o, = 05 . Therefore,
) 1

. . 1 .
exp(02 iwt) =X 20 ven 77 LEWD" + Z;(;o, odd o7 2w )"

even odd

=1,0,

. . coswt sinwt
=1coswt+z(rzsmwt=( . )
—sinwt coswt

We find the solution
(mwx)(t) (coswt sinwt)(mwx

, O

—sinwt coswt
_( mwx(0)coswt+ p(0)sinwt )
" \—mwxO)sinwt+ p0)coswt /)
Using this solution, we calculate the expectation value,

1 0 .
@ = <f})}(|?|>f> = o5 (f1x0)coswi + 2O Ginwt| f)

=\ 7= 2Re(f)cosw i+ —— | 212 2 m(f) sinwi
= "_ 2 (Re(f)cos wt +Im(f)sinwi),

2mw
which agrees with the calculation in the Schrodinger picture.




