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Final

1. Zeeman effect

The sodium D-lines are the transitions of 3 p3, = 3512 (5890 A) and 3 p;;» = 3512 (5896 A). The corresponding photon
energies are 2.105eV and 2.103 eV, respectively.

In a weak magnetic field, the 3 p3; level splits into four levels with m; = R,

T T T3 %3 , the 3 py» level into two levels

with m; = é , 2 , and the 3 51, level into two leves with m; = %, _71 . Following Sakurai Eq. (5.3.32), the energy shifts are
(in the Gaussian unit)

AEp =~ SZ? m;(1 £ 211+1 )

which are

AEB = - ;;ﬂg % m.,-for 3p3/2 ’

AEB = - ;;ﬂ( 3 m; for 3p1/2 ’

AEg = "hB 2mjfor 3s1/2

2 =-5.788 107> eV/T.

Under the electric dipole transitions, we have the selection rules that Al =+1, and Am; =0, £1. Therefore the allowed
transitions, m; , and the photon energies are:

3p3pn > 3s1p

25 3:E=2105eV - 42 (32 2 -21)eV/T =(2.105+5.788 10 B/T)eV
T > 2:E=2105eV-£L (3 2 -2 1)eV/T =(2.105-1.929107 B/T)eV
T o S E=2105eV - £ (2 1 —220)eV/T =(2.105+9.647 107 B/T)eV
St 2 E=2105eV - £2 (2 2L -2 0)eV/T = (2.105-9.647 107 B/T)eV
o 2L E=2105eV - 22 (2 1 -21)eV/T =(2.105+1.929107 B/T)eV
25 L E=2105eV-£E (3 2 -2)eV/T=(2.105-5.788107 B/ T)eV

T E=2103eV - £ (22 -2 1)eV/T=(2.103-3.859107 B/T)eV

2 2me N3 2
2o S E=2103eV- 22 (222 L)eV/T=(2.103+7.717107° B/T)eV
Tl—>— E=2103eV - £ (3 5 -21)eV/T=(2.103-7.717107 B/T)eV
S5 S E=2103eV -2 (22 -2 1)eV/T =(2.103+3.859 107 B/T)eV

The 5890 A line splits into six equally spaced lines, while the 5896 A splits into four lines with unequal spacings.
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In[22]:= Plot[{2.105+5.78810° B, 2.105-1.92910° B, 2.105+9.647 10° B, 2.105-9.647 10° B,
2.105+1.92910°B, 2.105-5.78810°B, 2.103-3.85910° B, 2.103 +7.717 10 B,
2.103-7.71710° B, 2.103 + 3.859 10> B}, {B, -5, 5}, PlotRange » {2.102, 2.106}]
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2.104
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out[22]= = Graphics -

The fact that there are even number of lines with unequal splittings was called "anomalous Zeeman effect" because it could
not be "explained" by semi-classical expectations without the spin.

By the way, for the magnetic field larger than a few Tesla, obviously the 2 p;; and 2 p3, states come close and hence the

magnetic field cannot be treated "weak." Both Paschen-Back and Zeeman effects need to be considered simultaneously
using the degenerate perturbation theory by diagonalizing the perturbation matrix as we discussed in the class.

2. lon in a crystal field

(@)

The Coulomb potential due to the positive ions on the electron
is

2 1 1 1 1
+ + + .
¢ ( V(x-ap +y2 +22 V(x+ay +y2 +22 V2 +(y-a)* +22 V2 +(y+a? +22 )
Taylor expanding it to the second order,

Simplify[Series[
5 1 1 1 1
e + + + /.
'\/(x—a)z+y2+zz '\/(x+a)z+y2+zz '\/x2+(y—a)z+zz '\/x2+(y+a)z+zz
{x>tx,y»>ty, z2>tz}, {t, 0, 2}]]

4 e? . e? (x? +y?-22?%) t?

\/a_z (a2)3/2 +O[t]3

The potential is therefore
2 2
V=4 1+ S (242 -27%)
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(b)

The second term AV = z—i (x? +y? —27%) is the perturbation on the p-electron. Note that its form is that of the quadrupole
moment, and hence is a spherical tensor of ¢ = 2 and k = 0.Therefore the expectation values are proportional to the Clebsch-
Gordan coefficients

Table[ClebschGordan[{1, 1}, {2, 0}, {1, 1}], {1, -1, 1}]

(L _JE N
o s T

It is clear that the energy levels are split into a degenerate doublet (m = + 1) and a separate singlet (m = 0).

To compute the actual expectation values, we use Yy=RrY,"™,
Y, =+ T@S_E r(Bcos2h-1)=— T@S_E (** +y* —=227%). Then

(,m|x*+y? =272 |1, m) =fr2drdQR2(r) Y/ (2 +yr =22 Y"

=—\ & [Fdrd QRO Y™ 1"
== % fda " R v
Now the last factor can be simplified using Sakurai's Eq. (3.7.73)
[dQ Y™ 'y =] & (1,2;00(12;10) (I, 2; mO|12; I m)
For our case, [ = 1, and hence
me y 0y om 5 2 1 2 1 5 12 1
[dar™ n' "=+ & (— ?)(\/—1_0_’ -V 75 \/—W-): 7 3.5 —3)
Finally we obtain
Aml 2+ =22 Lmy=—y 1% 2y & (-4, 2,- 1)
_ 202 4 2
- <r >(?a ) ?)
The energy shifts are

CmlR+y =22 L,my= 25 (21, -2, 1).

The degeneracy is due to the time-reversal invariance of the Hamitonian, which interchanges m = 1 and m = —1. Another
symmetry that explains the degeneracy is the 180 degrees rotation around x or y axis, which also interchanges m = 1 and
m = —1 states. Either of them leaves the Hamiltonian invariant and hence guarantees the degeneracy.

3. Tritium Beta Decay

This is a problem where the hydrogen nucleus "suddenly" changes its charge from Z =1 to Z =2. The needed wave
functions are

R = a-3/2 2 E-r/a
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Rys = (2a)32 (2 _ i) gr/(22)
a
e 7T (2-%)
2+/2 a32
Rip = (22) %2 g/ (2a)
3 a
e s r
2+/6 a5/2

Just before the beta decay, the electron was in the 1s state with Z=1. Note that the Bohr radius changes to

a - + = 7 after the beta decay. Therefore the probability to find the electron in the 1 s state of the He™ ion is given by the

overlap integral,
a
Ris /. {a» —
o /e a2}

4 \/3 e"zi‘
Tavr

Integrate[% R; ¢ r?, {r, 0, »}, Assumptions -» a > 0]

16 /2

27

0.702332

Hence 70.2%. The probability to find the electron in the 2 s state of the He™ ion is

Ry /. {a—);}

-z 2r
e (2-)
a3/2

Integrate[% R, r?, {r, 0, »}, Assumptions » a > 0]

1
2

N[%?]

0.25

Hence 25.0%.

Finally, the 2 p state has / = 1, while the sudden change in the nuclear charge does not change the spherical symmetry, and
hence the probability to find the electron in the 2 p state, or any states with non-zero /, is zero. (Of course this part of the
conclusion depends crucially on the assumption to ignore the nuclear recoil.)
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4. Dyson Series

(a)

The Dyson series up to O(V?)is
_ —i t ld| —i2 ! ZVV 'V ududv OV%

Uiy =1+ 3 [[Vi@Yde'+(5) [ [ Vi@ Vi di"di' +O(V?).
We take its matrix element between the same states,

. . =i (. N I -2 it I m " '
U =1+ 3 GV de+ (G [0 [ GIVi@) Vi [iyde"de'+ 0(V?)
The second term is
77[ j(‘)teiE; f'/h Vii e—iE; t'/h dt' = %Il ‘/“ t,
which is identified with the term —- A;Y tin Eq. (1). Therefore we reproduce the result from the time-independent perturba-
tion theory
AD =V
The third term produces many interesting contributions. Inserting the complete set of intermediate states,

G L Ve Vi Lyd e de = - [ LTS, GLV@) lmy Gm [ Via iy d e d

-1 t t o AR S "
— j(; j(; Zm Vime i(E,, —E;)t'/h Vmi et(E, E,)t"/h di"dt'

w”

)

I
(VR P S | Vin P [ e M g )

t 1 _efi(l:'m —Ep)t/h

T (Vi P+ Z [Vin P [ S dt)
(% Vi 2 + Dinsi | Vim |2 i(Em—lE,-)/h (t - e;i(EE,;E—/;/;/%I ))
V2 Dy | Vin Pl (3 1+ 52852)
e 23, B0 (Y, P (5, )
The first term is % (% Ai(l) t)2 , while the second term is _71’ A,»(z) t with
2 Viml?
MO =) L

The last term is a part of the wave function renormalization factor

=1- Vil
Z;=1 Zmﬂ (Ei=En)* ~
Finally, the third term is the time-evolution of the state m mixed to the state i due to the perturbation by

-1 t t' i —F)¢t —i(E:— "
— _j(; J(; (Vii Vii +Zm¢[ Vime i(E,—E)t'/h Vmie i(E; Em)z/ﬁ)dtudtv

|
o= = ml\ > &l
v R U

For ¢t - oo,

Vim
Ei-En *
this term oscillates rapidly and can be dropped; however it is there for a finite 7.

Just in case you are wondering why this works, here is the reason (not a part of the exam). Using the notation of the time-
independent perturbation theory, our intial and the final states are the unperturbed |i?). It can be expanded in the true
Hamiltonian eigenstates as
1) =%, 1m)m @) = 1) G 1O) + 3, |m) (m ] i),
The wave function renormalization factor is Z; = | (i | {?)|?, and hence (with a proper phase convention)
1) = Z2 i) + 3, [ m) (m |19,
The time-evolution operator in the interaction picture is U, (t) = ettt () (Eq. (5.6.9) in Sakurai with 7y = 0), and hence
O U@ [EO) = GO o Uy [ 1) = 5710 GO | U0 |E©)
i E:© . . o
= BT INZ U@ |0+ B m L U@ L) [ | €Y 1P)
= 7, e 1 E-EO) Z eI En=Ei )t/ | (m 1@y P
m#+i
If you expand this expression up to O(V?), you recover precisely the result obtained above. This technique and that below
are somehow not discussed in any textbooks I know. If you find one, let me know.
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(b)

Following the same steps as above,
—i\2 iy ' " - n ! - ' . ' mw s " '
() f’fl<z|V1(t)V1(t)|z>dr di'= 3k [ LS, V@) Im) (Vi@ |y d e d

= f f Z Vi coswt' e En=EDTI Y - coswt" e M E=ED I gy g g

= ;—zfo fo (Vi coswt'coswt"+3,.; Vimcoswt' e EnENIN Y, cos wt" e E-E My g d ¢

Because we are interested in the term that grows as ¢, we can drop all the other terms. Namely, the integrand of the first
term oscillates rapidly for large ¢ and ¢', and we drop it. The second term is

— t I3 . ' . " . "
TZI Z ' Vim Vini f f Coswtlg—t(E,,,—Ei)z/h % (g—t(Ei—Em+hw)z/h + g—t(Ei—Em—hw)z/h)dtvldtl
m#*i

~i(E; ~Em +h o) ('/h _ —i(E} ~Ep ~hw) 1/ _
Z—Z Vthmtf COS(l)tel(E E)t/hi(e./ l+€. l)dl'

—i(E;i—E,+hw)/h —i(E;—E,—hw)/h

- : ' , IO _ g iEy ~Ep) 1/ POT _giEm~Ep) 1R ,
=7 Zm# Vim Vi fo coswt 5 ( SHE—E,+hoyh T —KE-E,—hoyh )dt
The terms with e~ En~ED /% gscillate rapidly and can be dropped. Then,

_ -l : (ML iwd | —iwf et eer )
=% me’ Vim Vi Jy 7 @ + e (smom + —amm o) 41
Only the terms without the oscillatory factors give O(f) contributions,

=t , oL 1 1
o Zm¢i Vim Vi 4 (E,'fEm+hw + E;*Em—hw)t
;l' : oL 2 (E;i~Ey)

Zm ,~V”" Vi T EE oy E oy !

— =i 1 Z Vi PEEy)
mz#i (Ei—En )2 (hw)?

Therefore,

A® = L Z Voni P (Ei~E)
T2 mzi Ei~En)—(hw) *

The expression does not go back to that in the time-independent perturbation theory in the limit w — 0. This is because the
quantity is the time average of the oscillating function {cos® wt) = =

()

In this case, the perturbation is V =eEj zcos(k x — wt)and hence

@ _ 1 lemiPEi=En)
A ¢ Eo Zm:att Ei—Ep)—(hw)?

Here, we used the electric dipole approximation and set kx =0

This energy shift should be compared to the energy of the electromagnetic wave
f &3 x% (Ey cos(k x — a)t)) f d® x , where the time average (cos? wt) = = 1s taken. Therefore, it corrects the
Lagrangian density as

+ Eo* %—Eoz(l——]‘\,iZeZZ M)

mzi (Ei~En) ~(hw)

where + is the number density of the hydrogen atom, and hence the polarizability is

22 Z 2mi 2 (B —E;)
a=2eEo” ), GrEthor

which agrees with the static case when w — 0.
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(@)

With the polarizability and the number density n,

_ N N2 N 22 [ P (B —Ei)
nw=0+Ya)" =1+ 222K Zmﬂ i o il

Cleary the denominator is smaller for larger 7w < | E; — E,, |, and hence the index of refraction increases for the shorter
wavelength. This leads to the prediction that red is at the top and violet at the bottom in a rainbow, which obviously
explains the our experience. See, e.g, http://acept.la.asu.edu/PiN/mod/light/opticsnature/rainbows.html

Now you can proudly tell your parents that you fully understand the rainbow from the first principle.



