
HW #4 (221A), due Sep 22, 4pm

1. The uncertainty relation is actually there in classical waves, too.

(a) Show that a “localized light” of the form

Ey(x, t) = E0 sin 2πν
(
t− x

c

)
e−(x−ct)2/2σ2

(1)

is a solution to the (one-dimensional) Maxwell equation. Sketch
its shape. Calculate the “uncertainty” in the position ∆x.

(b) Using Fourier analysis, determine the frequency of the light and
its dispersion ∆ν. What is the product ∆x∆ν, and how small can
it be?

Note However, the “uncertainty principle” in this case is purely clas-
sical, without involving h̄. Only when you want to interpret the
frequency ν as the momentum of the photon p = h̄ν/c, it becomes
the quantum mechanical uncertainty principle.

2. The Gaussian wave packet represents a particle traveling in a “tight
pack,”

ψ(x) = 〈x|ψ〉 = Neipx/h̄e−(x−x0)2/4d2

. (2)

Below, X and P are operators while x and p are numbers.

(a) Work out the normalization constant N .

(b) Show that 〈X〉 = x0.

(c) Calculate ∆X.

(d) Work out the wave function in the momentum space, φ(p) = 〈p|ψ〉.
(e) Show that 〈P 〉 = p.

(f) Calculate ∆P and show this wave function is a “minimum uncer-
tainty state,” ∆X∆P = h̄/2.

3. The operator U(a) = eipa/h̄ is a translation operator in space (here we
consider only one dimension). To see this, we need to prove an identity

eABe−A =
∞∑

n=0

1

n!
[A, [A, · · · [A,︸ ︷︷ ︸

n

B ] · · ·]]︸ ︷︷ ︸
n

= B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · (3)



(a) Consider B(t) = etABe−tA, where t is a real parameter. Show
d
dt
B(t) = etA[A,B]e−tA.

(b) Obviously, B(0) = B and therefore

pB(1) = B +
∫ 1

0
dt
d

dt
B(t). (4)

Now using the power series B(t) =
∑∞

n=0 t
nBn and using the above

integral expression, show Bn = 1
n
[A,Bn−1].

(c) Show by induction that

Bn =
1

n!
[A, [A, · · · [A,︸ ︷︷ ︸

n

B ] · · ·]]︸ ︷︷ ︸
n

.

(d) Use B(1) = eABe−A and prove the identity Eq. (3).

(e) Prove eipa/h̄xe−ipa/h̄ = x+a, showing U(a) indeed translates space.


