HW #4 (221A), due Sep 22, 4pm

1. The uncertainty relation is actually there in classical waves, too.

(a) Show that a “localized light” of the form

Note

Ey(ZU, t) = EQ sin 27wv (t — QC:) e—(:c—ct)Q/ng (1)
is a solution to the (one-dimensional) Maxwell equation. Sketch

its shape. Calculate the “uncertainty” in the position Az.

Using Fourier analysis, determine the frequency of the light and
its dispersion Av. What is the product AzAv, and how small can
it be?

However, the “uncertainty principle” in this case is purely clas-
sical, without involving 4. Only when you want to interpret the
frequency v as the momentum of the photon p = hv/e, it becomes
the quantum mechanical uncertainty principle.

2. The Gaussian wave packet represents a particle traveling in a “tight
pack,”

U() = (o) = Nem/he-te—m/id )

Below, X and P are operators while z and p are numbers.
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Work out the normalization constant V.

Show that (X) = .

Calculate AX.

Work out the wave function in the momentum space, ¢(p) = (p|¢)).
Show that (P) = p.

Calculate AP and show this wave function is a “minimum uncer-
tainty state,” AXAP = h/2.

3. The operator U(a) = ¢®" is a translation operator in space (here we
consider only one dimension). To see this, we need to prove an identity

e'Bet = Y —[A[A,-- [A,Bw



(a) Consider B(t) = e*Be™*4, where t is a real parameter. Show
4B(t) = e[A, Ble .

(b) Obviously, B(0) = B and therefore

pB(1) = B+ /01 dtth(t). (4)

Now using the power series B(t) = > o>, t"B,, and using the above
integral expression, show B, = %[A, B4

(¢) Show by induction that
1
—_— =

n!
n n

(d) Use B(1) = eABe™ and prove the identity Eq. (3).

(e) Prove e?¥/"ge=#¥/" = x4 a, showing U(a) indeed translates space.



