
Dirac Delta Function

1 Definition

Dirac’s delta function is defined by the following property

δ(t) =

{
0 t 6= 0
∞ t = 0

(1)

with ∫ t2

t1
dtδ(t) = 1 (2)

if 0 ∈ [t1, t2] (and zero otherwise). It is “infinitely peaked” at t = 0 with the
total area of unity. You can view this function as a limit of Gaussian

δ(t) = lim
σ→0

1√
2π σ

e−t2/2σ2

(3)

or a Lorentzian

δ(t) = lim
ε→0

1

π

ε

t2 + ε2
. (4)

The important property of the delta function is the following relation∫
dtf(t)δ(t) = f(0) (5)

for any function f(t). This is easy to see. First of all, δ(t) vanishes everywhere
except t = 0. Therefore, it does not matter what values the function f(t)
takes except at t = 0. You can then say f(t)δ(t) = f(0)δ(t). Then f(0)
can be pulled outside the integral because it does not depend on t, and you
obtain the r.h.s. This equation can easily be generalized to∫

dtf(t)δ(t− t0) = f(t0). (6)

Mathematically, the delta function is not a function, because it is too
singular. Instead, it is said to be a “distribution.” It is a generalized idea
of functions, but can be used only inside integrals. In fact,

∫
dtδ(t) can be

regarded as an “operator” which pulls the value of a function at zero. Put it
this way, it sounds perfectly legitimate and well-defined. But as long as it is
understood that the delta function is eventually integrated, we can use it as
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if it is a function. One caveat is that you are not allowed to multiply delta
functions whose arguments become simultaneously zero, e.g., δ(t)2. If you
try to integrate it over t, you would obtain δ(0), which is infinite and does not
make sense. But physicists are sloppy enough to even use δ(0) sometimes, as
we will discuss below.

2 Fourier Transformation

It is often useful to talk about Fourier transformation of functions. For a
function f(t), you define its Fourier transform

f̃(s) ≡
∫ ∞
−∞

dt
eits

√
2π
f(t). (7)

This transform is reversible, i.e., you can go back from f̃(s) to f(t) by

f(t) =
∫ ∞
−∞

ds
e−its

√
2π
f̃(s). (8)

You may recall that the patterns from optical or X-ray diffraction are Fourier
transforms of the structure. For example, Laue determined the crystallo-
graphic structure of solid by doing inverse Fourier-transform of the X-ray
diffraction patterns.

If you set f(t) = δ(t) in the above equations, you find

δ̃(s) ≡
∫ ∞
−∞

dt
eits

√
2π
δ(t) =

1√
2π
, (9)

δ(t) =
∫ ∞
−∞

ds
e−its

√
2π

1√
2π

=
∫ ∞
−∞

ds
e−its

2π
. (10)

In other words, the delta function and a constant 1/
√

2π are Fourier-transform
of each other.

Another way to see the integral representation of the delta function is
again using the limits. For example, using the limit of the Gaussian Eq. (3),

δ(t) = lim
σ→0

1√
2π σ

e−t2/2σ2

= lim
σ→0

∫ ∞
−∞

dω
1

2π
e−ω2σ2/2e−iωt

=
∫ ∞
−∞

dω

2π
e−iωt. (11)
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3 Position Space

Dirac invented the delta function to deal with the completeness relation for
position and momentum eigenstates. The eigenstate for the position operator
x

x|x′〉 = x′|x′〉 (12)

must be normalized in a way that the analogue of the completeness relation
holds for discrete eigenstates 1 =

∑
a |a〉〈a|. Because the eigenvalues of the

position operator are continuous, the sum is replaced by an integral

1 =
∫
|x′〉dx′〈x′|. (13)

For the case of the discrete eigenstates, using the completeness relationship
twice gives a consistent result because of the orthonomality of the eigenstates
〈a′|a′′〉 = δa′,a′′ :

1 = 1× 1 =

(∑
a′
|a′〉〈a′|

)(∑
a′′
|a′′〉〈a′′|

)
=

∑
a′,a′′

|a′〉(〈a′|a′′〉)〈a′′|

=
∑
a′,a′′

|a′〉δa′,a′′〈a′′|

=
∑
a′
|a′〉〈a′| = 1. (14)

Therefore, we need also the states |x′〉 to be orthonomal. To see it, we try
the same thing as in the discrete spectrum

1 = 1× 1 =
(∫

|x′〉dx′〈x′|
)(∫

|x′′〉dx′′〈x′′|
)

=
∫
dx′dx′′|x′〉(〈x′|x′′〉)〈x′′|. (15)

Now we can determine what the “orthonomality” condition must look like.
Only by setting 〈x′|x′′ = δ(x′ − x′′), we find

1 =
∫
dx′dx′′|x′〉δ(x′ − x′′)〈x′′|

=
∫
dx′|x′〉〈x′| = 1. (16)
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At the last step, I used the property of the delta function that the integral
over x′′ inserts the value x′′ = x′ into the rest of the integrand. This is why
we need the “delta-function normalization” for the position eigenkets.

It is also worthwhile to note that the delta function in position has the
dimension of 1/L, because its integral over the position is unity. Therefore
the position eigenket |x′〉 has the dimension of L−1/2.

4 Momentum Space

As you see in Sakurai Eq. (1.7.32), the eigenstates of the position and mo-
mentum operators have the inner product

〈x′|p′〉 =
1√
2πh̄

eip′x′/h̄ (17)

From this expression, you can see that the wave functions in the position
space and the momentum space are related by the Fourier-transform.

φα(p′) = 〈p′|α〉

=
∫
〈p′|x′〉dx′〈x′|α〉

=
∫
dx′

e−ip′x′/h̄

√
2πh̄

ψα(x′). (18)

The completeness of the momentum eigenstates can also be shown using
the properties of the delta function.∫

|p′〉dp′〈p′| =
∫
dp′dx′dx′′|x′〉〈x′|p′〉〈p′|x′′〉〈x′′|

=
∫
dp′dx′dx′′|x′〉e

ix′p′/h̄

√
2πh̄

e−ix′′p′/h̄

√
2πh̄

〈x′′|

=
∫
dx′dx′′|x′〉〈x′′|

∫
dp′

ei(x′−x′′)p′/h̄

2πh̄
. (19)

The last integral, after changing the variable from p′ to k = p/h̄, is nothing
but the Fourier-integral expression for the delta function. Therefore,

=
∫
dx′dx′′|x′〉〈x′′|δ(x′ − x′′)

=
∫
dx′|x′〉〈x′| = 1. (20)

This proves the completeness of the momentum eigenstates.
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