
221B Lecture Notes
Quantum Field Theory II (Bose Systems)

1 Statistical Mechanics of Bosons

1.1 Partition Function

As discussed in 221A, the path integral with the imaginary time gives you
the partition function of the system. Let us consider the partition function
of the free Schrödinger field theory, first the bosonic one. This calculation
shows non-trivially that the quantized Schrödinger field theory indeed con-
tains multi-body states automatically and is also useful from a practical point
of view.

The path integral in the particle quantum mechanics is given by the
summation over all possible paths in the configuration space xi(t). In the field
theory, ψ(~x) is the canonical coordinate, and it can follow various “paths”
ψ(~x, t). Therefore, the path integral in field theory is a summation over all
possible field configurations ψ(~x, t). This discussion defines the path integral∫

Dψ(~x, t)Dψ†(~x, t)eiS/h̄, (1)

where the action is that of the field theory, such as

S =
∫
d~xdt

(
ψ∗ih̄ψ̇ + ψ∗

h̄2∆

2m
ψ

)
(2)

in the free case.
To calculate the partition function, we go to the imaginary time t = −iτ ,

Z =
∫
Dψ(~x, τ)Dψ†(~x, τ) exp

[
−1

h̄

∫ h̄β

0
dτ
∫
d~x

(
ψ∗h̄ψ̇ + ψ∗

−h̄2∆

2m
ψ

)]
.

(3)
We impose the periodic boundary condition ψ(~x, t + h̄β) = ψ(~x) for β =
1/kT .

Because of the periodic boundary condition in τ and also in space due to
the box normalization, we can expand in Fourier series both in the imaginary
time as well as in space,

ψ(~x, τ) =
1

L3/2

∑
~p,n

z~p,ne
i~p·~x/h̄e2πinτ/h̄β (4)
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and simiarly for ψ†

ψ†(~x, τ) =
1

L3/2

∑
~p,n

z∗~p,ne
−i~p·~x/h̄e−2πinτ/h̄β. (5)

Then the exponent in the partition function Eq. (3) is

− 1

h̄

∫ h̄β

0
dτ
∫
d~x

(
ψ∗h̄ψ̇ + ψ∗

−h̄2∆

2m
ψ

)
= −

∑
~p,n

(
2πin+ β

~p2

2m

)
z∗~p,nz~p,n. (6)

Therefore, the path integral is simply a product of many many Gaussian
integrals

Z =
∏
~p,n

∫
dz∗~p,ndz~p,ne

−(2πin+β~p2/2m)z∗
~p,n

z~p,n =
∏
~p,n

π

2πin+ β~p2/2m
. (7)

Now we use the infinite product representation of the hyperbolic functions

∞∏
n=1

(
1 +

x2

n2

)
=

sinh πx

πx
∞∏
n=1

(
1 +

x2

(2n− 1)2

)
= cosh

πx

2
. (8)

We use the first identity here. The partition function Eq. (7) can be rewritten
as

Z =
∏
~p

π

β~p2/2m

∞∏
n=1

π

(2πn)2 + (β~p2/2m)2

=
∏
~p

π

β~p2/2m

∞∏
n=1

π

(2πn)2

(
1 +

(β~p2/2m/2π)2

n2

)−1

=
∏
~p

( ∞∏
n=1

π

(2πn)2

)
π

β~p2/2m

β~p2/4m

sinh β~p2/4m

= c
∏
~p

2

sinh β~p2/4m

= c
∏
~p

e−β~p
2/4m

1− e−β~p2/2m
. (9)
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where c is an (infinite) overall constant, which is not important when evaluat-
ing various thermally averages quantities. This is a grand partition function
which contains summation over all possible number of particles but with no
chemical potential. One small difference from the conventional calculation is
that the path integral automatically includes the “zero-point energy” ~p2/4m,
which results in the exponential factor in the numerator. The reason why
there is this zero-point energy is because the Fock space is a collection of
(infinite number of) harmonic oscillators and each harmonic oscillator has
the zero-point energy. But the zero-point energy does not lead to any phys-
ical consequences (while the zero-point fluctuation does) and we can always
shift the energy of the system by an infinite constant

∑
~p ~p

2/4m to remove
the zero-point energy in the expression.

This simple calculation clearly shows the advantage of the Schrödinger
field theory: it sums up states with different number of particles automati-
cally.

The inclusion of the chemical potential is obvious. Because the number
operator is N =

∫
d~xψ†(~x)ψ~x and the grand canonical emsenble is summed

with a factor of e−β(E−µN), the path integral Eq. (3) is modified to

Z =
∫
Dψ(~x, τ)Dψ†(~x, τ)

exp

[
−1

h̄

∫ h̄β

0
dτ
∫
d~x

(
ψ∗h̄ψ̇ + ψ∗

−h̄2∆

2m
ψ − µψ∗ψ

)]
. (10)

The result of the path integral is then

Z = c
∏
~p

e−β(~p2/2m−µ)/2

1− e−β(~p2/2m−µ)
. (11)

Note that Z = e−βΩ with Ω = −pV = F − µN for the grand partition
function.

The thermal average energy is given by the standard formula by the
derivative with respect to β (but keeping βµ fixed):

〈E〉 = − ∂

∂β
lnZ

∣∣∣∣∣
βµ

= − ∂

∂β

log c+
∑
~p

(
−1

2
β

(
~p2

2m
− µ

)
− ln(1− e−β(~p2/2m−µ))

)∣∣∣∣∣∣
βµ
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=
∑
~p

~p2

2m

(
1

2
+

e−β(~p2/2m−µ)

1− e−β(~p2/2m−µ)

)

=
∑
~p

~p2

2m

(
1

2
+

1

eβ(~p2/2m−µ) − 1

)
. (12)

This must be a famililar expression to you, again except the zero-point energy
term that can be dropped without changing physical content.

1.2 Bose–Einstein Condensate

One prime application of Schrödinger field theory is the Bose–Einstein con-
densate.

The expression for the thermally averaged energy Eq. (12) has a problem
when the chemical potential µ is positive. The region of the momentum space
~p2/2m < µ does not give meaningful result: it is negative. The explanation
you have heard back in college may be that this suggests that there is a
macroscopic number of bosons condensed in this momentum region. But
what is actually going on?

Let us go back to the partition function Eq. (10), but now with a δ-
function repulsive potential term

Z =
∫
Dψ(~x, τ)Dψ†(~x, τ)

exp

[
−1

h̄

∫ h̄β

0
dτ
∫
d~x

(
ψ∗h̄ψ̇ + ψ∗

−h̄2∆

2m
ψ − µψ∗ψ

)
− 1

2
λψ∗ψ∗ψψ

]
.

(13)

(We used to write λ = h̄2γ.) The action in the exponent permits the inter-
pretation that the chemical potential is a part of the potential term

V (ψ) = −µψ∗ψ +
1

2
λψ∗ψ∗ψψ (14)

Now we can ask the question what happens when µ > 0. The potential for
ψ is minimized when it has a finite value:

ψ =

√
µ

λ
eiθ, (15)
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where θ is an arbitrary phase. The expectation value of the Schrödinger
field is the Bose–Einstein condensate. The number density of particles in the
condensate is of course

ρ =
N

L3
= ψ∗ψ =

µ

λ
, (16)

and this is the equation what determines the chemical potential.
When we saw that the quantized Schrödinger field theory gives multi-

particle states, we didn’t ask the question what Schrödinger field meant before
the quantization. We were happy that we could successfully obtain the multi-
particle quantum mechanics. In the normal situation without a condensate,
the expectation value of ψ vanishes. Therefore ψ is definitely not classical
and genuinely quantum. The particles are quantum fluctuations around the
vanishing expectation value 〈ψ〉 = 0. On the other hand, what we see here is
that the classical Schrödinger field can exist and describe the Bose–Einstein
condensate.

Remember that the field operator ψ is an annhilation operator. If it
has an expectation value in the ground state, the ground state cannot be
an eigenstate of the number operator. This point can be understood by
assuming that the only condensate is in the zero-momentum state. The
Hamiltonian for the zero-momentum mode with the delta-function potential
V (~x− ~y) = λδ(~x− ~y) or equivalently V (~p− ~q) = 1

L3λ is

H = −µa†(0)a(0) +
λ

2L3
a†(0)a†(0)a(0)a(0). (17)

It is difficult to diagonalize this Hamiltonian. However, the following varia-
tional method can be used. The coherent state

|f〉 = e−f
∗f/2efa

†(0)|0〉, (18)

as discussed in 221A, is an eigenstate of the annihilation operator

a(0)|f〉 = f |f〉, (19)

and the expectation value of the Hamiltonian for this state is

〈f |H|f〉 = −µf ∗f +
λ

2L3
f ∗f ∗ff. (20)

Here, we used the fact that 〈f |a†(0) = 〈f |f ∗. Minimizing it with respect to
the complex parameter f , the variational method suggests the approximate
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ground state

|f〉 with f =

√
µL3

λ
eiθ, E = −1

2
µf ∗f = −µ

2L3

2λ
. (21)

The energy is clearly lower than the “vacuum” |0〉. This state obviously
shows an expectation value for the annihilation operator

〈f |a(0)|f〉 =

√
µL3

λ
eiθ (22)

and hence also for the field operator

〈f |ψ(~x)|f〉 =
1

L3/2

∑
~p

〈f |a(~p)ei~p·~x/h̄|f〉 =

√
µ

λ
eiθ, (23)

consitent with Eq. (15). Even though the coherent state is not the true
ground state of the Hamiltonian, it is clearly close enough as suggested by
the classical minimum of the Schrödinger field.

Note that the condensate could be described in this formalism because
it allowed states with different number of particles in the same Hilbert
space. This state could never be described in the conventional multi-body
Schrödinger wave functions.

1.3 More on Coherent States

How good is the variational method in this case? To see this, let us go back
to the Hamiltonian Eq. (17) and act it on the coherent state Eq. (18). We
find

H|f〉 =

(
−µa†a+

λ

2L3
a†a†aa)

)
|f〉

=

(
−µa†f +

λ

2L3
a†a†f 2)

)
|f〉

We dropp the momentum index in this section. What we need to know now
is the action of the creation operator on the coherent state.

It is useful to look at the probability distribution in the number of parti-
cles in a coherent state.

P (n) = |〈n|f〉|2 =

∣∣∣∣∣〈n|e−f∗f/2fnn!
(a†)n|0〉

∣∣∣∣∣
2

= e−f
∗f

∣∣∣∣∣〈n| fn√n!
|n〉
∣∣∣∣∣
2

= e−f
∗f (f ∗f)n

n!
.

(24)
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This is nothing but the Poisson distribution with the averange n̄ = f ∗f .
Therefore for a large N = f ∗f , the fluctuation in the number is ∆N =

√
N

and hence the number of particles in the coherent state is determined more
and more accurately as N increases: ∆N/N = 1/

√
N . Assuming N � 1, the

number operator a†a should therefore return the value N up to corrections
of order 1/

√
N . What it means is that, in the limit of large N , the coherent

state is nearly an eigenstate of the creation operator such that

N |f〉 = a†a|f〉 = fa†|f〉 ' f ∗f |f〉+O(N)−1/2. (25)

In this limit, the variational state Eq. (21) becomes exact up to corrections
of order 1/

√
N .

What is interesting is the emergence of coherence at the expense of uncer-
tainty in the number. This is the reflection of what is called number-phase
uncertainty principle. We can define the “phase operator” θ by

a = eiθ
√
N, (26)

which is clearly consistent with the definition of the number operatorN = a†a
is the number operator. This definition is singular when N = 0, but because
we are interested in states with a macroscopic number of particles in the
condensate N � 1, let us ignore the subtlety that happens only when N = 0.
From the commutation relation [N, a] = −a, we find

[N, eiθ] = −eiθ, (27)

which can be rephrased as

N = i
∂

∂θ
. (28)

Therefore, we find the commutator

[N, θ] = i. (29)

In analogy to the canonical commutation relation [x, p] = ih̄ giving rise to
the uncertainty principle ∆x∆p ≥ h̄/2, we find the number-phase uncertainty
principle

∆N∆θ ≥ 1

2
. (30)

One can construct “eigenstate” of the phase within the cheat we did with
the subtlety with the N = 0 state. Consider

|φ〉 ≡
∞∑
n=1

einφ|n〉. (31)
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We now act the “phase” operator eiθ = a 1√
N

on this state, and find

eiθ|φ〉 =
∞∑
n=1

einφa
1√
n
|n〉

=
∞∑
n=1

einφ
1√
n

√
n|n− 1〉

= eiφ
∞∑
n=0

einφ|n〉

= eiφ(|φ〉+ |0〉). (32)

Up to the subtlety with the state |0〉, it is an “eigenstate” of the phase
operator. Note that in this state, the number is completely uncertain: the
states with different numbers are added together with equal weight (unity).

It is useful to picture what the number-phase uncertainty means. In
case of a simple harmonic oscillator, one can write a = (x + ip)/

√
2h̄. On

the classical phase space (x, p), the number operator N is the squared radius
from the origin (times a half), while the phase operator eiθ is nothing but the
phase on the complex plane x+ ip. The uncertainty principle tells you that
a quantum mechanical state occupies the minimum area of 2πh̄ on the phase
space. The number eigenstate is therefore approximately a “daughnut” with
a radius 2πh̄N ≤ x2 + p2 ≤ 2πh̄(N + 1). The phase is completely uncertain
in this case. On the other hand, the phase eigenstate would correspond to
a thin ray emanating from the origin towards infinity. It has a well-defined
phase, while the number is completely uncertain. The coherent state is a
compromise between the number and phase. The number is uncertain only by
∆N =

√
N and hence the relative error is small ∆N/N = 1/

√
N for N � 1.

That allows the phase to be also relatively well determined ∆θ ' 1/
√
N . It

can be viewed as a patch around a point on the phase space spread both
along the radial and the angular directions.

Note that the coherent state is not a ground state of the Hamiltonian
Eq. (17) but we regard it as a variationa ansatz. If this ansatz is better than
the number eigenstate has to be studied including the non-zero modes.

1.4 Excitations above Bose–Einstein Condensate

The fascinating aspect of Bose–Einstein condensates is that a macroscopic
number of particles behave collectively as a coherent matter wave. Starting
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from the classical picture of particles, it is definitely a highly quantum me-
chanical phenomenon. On the other hand, from the point of view of the field
theory formulation, the classical field describes the coherent matter wave
while its quantization gives ordinary particles. Two approaches are therefore
the opposite.

Going back to the real-time action

S =
∫
dtd~x

[
ψ∗ih̄ψ̇ − ψ∗−h̄∆

2m
ψ + µψ∗ψ − λ

2
ψ∗ψ∗ψψ

]
, (33)

we write down the Euler–Lagrange equation for the classical field ψ(~x, t)

ih̄ψ̇ − −h̄∆

2m
ψ + µψ − λψ∗ψψ = 0. (34)

The expectation value ψ =
√
µ/λ we discussed already is a solution to this

classical equation of motion.
It is instructive to study the fluctuation around the static expectation

value from this equation of motion. The field can fluctuate both in the
density and the phase. We parameterize them by

ψ =
(√

µ

λ
+ χ

)
eiθ (35)

where both χ and θ are real-valued fields. By plugging this parameterization
into the equation of motion Eq. (34), we obtain

ih̄χ̇− h̄〈ψ〉θ̇ +
h̄2

2m
(∆χ+ 2(~∇χ) · i~∇θ + (〈ψ〉+ χ)(−(~∇θ)2 + i∆θ))

+µ(〈ψ〉+ χ)− λ(〈ψ〉+ χ)3 = 0. (36)

This non-linear equation cannot be solved in general. However, if we are
interested in small fluctuations, we can linearize the equation, i.e., drop all
terms quadratic in the fluctuation or higher. Then the linearized equation is
quite simple:

ih̄χ̇− h̄〈ψ〉θ̇ +
h̄2

2m
(∆χ+ 〈ψ〉i∆θ))− 2µχ = 0. (37)

Since the real and imaginary parts of the equation must both be satisfied,
we find two coupled equations(

2µ− h̄2∆

2m

)
χ+ h̄〈ψ〉θ̇ = 0 (38)
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h̄χ̇+
h̄2

2m
〈ψ〉∆θ = 0. (39)

Taking h̄(∂/∂t) of the first equation and substituting it into the second one,
we find

− h̄2θ̈ +

(
2µ− h̄2

2m

)
h̄2∆

2m
θ = 0. (40)

Now using the Fourier modes θ ∝ sin((Et− ~p · ~x)/h̄), we find the dispersion
relation of the fluctuation

E2 =

(
2µ+

~p2

2m

)
~p2

2m
. (41)

For small momentum in Eq. (41), we find that the energy is linear in mo-
mentum. We identify this limit as the sound wave. Note that the χ field is
fluctuation in the density ρ = ψ∗ψ = (〈ψ〉+ χ)2, and is related to the plane
wave of θ by Eq. (38). Therefore the wave is indeed a progation of den-
sity fluctuation, which justifies the interpretation. The sound speed is then
directly read off from the dispersion relation Eq. (41) for small momentum

c2
s =

E2

~p2

∣∣∣∣∣
~p→0

=
µ

m
. (42)

After quantization, this becomes a quasi-particle (elementary excitation of a
collective system) called phonon with the energy E = cs|~p|.

On the other hand, at large momentum, the dispersion relation Eq. (41)
can be approxiimated as

E ' ~p2

2m
+ µ+O(~p2)−1 (43)

and hence it is the same as the single particle excitation except the offset
µ = c2

sm. This is called the excitation in the free-particle regime.
In the case of liquid 4He, the interaction is quite strong and the linearized

analysis fails. The dispersion relation rises linearly in the phonon-regime but
it turns around the develops a minimum called “roton.” On the other hand,
recent developement of Bose–Einstein condensate in atomic gas made the
comparison of data to perturbation theory possible. A small complication,
however, is that the system size is somewhat small (∼ 107 particles) and
the finite-size corrections are important especially for the phonon-regime.
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You can read about this in a good review by Dan Stamper-Kurn in our
Department (together with Ketterle at MIT) in cond-mat/0005001.

How do we describe the quasi-particle excitation with the operator lan-
guage? To study this, we write down the Hamiltonian in the momentum
space using formulae in the previous lecture note,

H =
∑
~p

(
~p2

2m
− µ

)
a(~p)†a(~p)+

1

2

λ

L3

∑
~p1,~p2,~p3,~p4

a†(~p4)a†(~p3)a(~p2)a(~p1)δ~p1+~p2,~p3+~p4 .

(44)

Because we took the coherent state for a(0) =
√
µ/λL3/2 as the variational

ansatz, the Hamiltonian for the non-zero modes is

H =
∑
~p

(
~p2

2m
− µ

)
a(~p)†a(~p)+

1

2
λ
∑
~p

µ

λ

(
a(~p)a(−~p) + a†(~p)a†(−~p) + 4a†(~p)a(~p)

)
,

(45)
where interaction terms proportional to λ among non-zero modes are omitted.
Note that the second term does not vanish in the weak-coupling limit λ→ 0
for fixed µ (i.e., fixed sound speed) because of the condensate µ/λ, while
the interaction terms vanish in the same limit. Therefore, it makes sense
to retain only the terms above and drop the interaction terms to study the
behavior of the non-zero modes. This Hamiltonian is rather peculiar because
it has a term with creation operators only or annihilation operators only. In
other words, this Hamiltonian no longer conserves the number of particles
because of the lack of the phase invariance a(~p)→ eiθa(~p).

Bogoliubov found a way to diagonalize this Hamiltonian. Among creation
and annihilation operators, both a(~p) and a†(−~p) change the momentum of
the state by −~p, either by annihilating momentum ~p or creating momentum
−~p. Because the number conservation is violated, creation and annihilation
operator can now mix, as long as they share the same momentum. Therefore,
we can consider the Boliubov transformation

b(~p) = a(~p) cosh η + a(−~p)† sinh η, (46)

b(−~p)† = a(~p) sinh η + a(−~p)† cosh η. (47)

The point is that the new operators defined this way also satisfy the same
commutation relation [b(~p), b†(~q)] = δ~p,~q and can be regarded as new creation
and annihilation operators. By suitably choosing the parameter η, we can

11



make Hamiltonian Eq. (45) not to have terms bb or b†b†. Choosing

cosh 2η =
~p2

2m
+ µ√

~p2

2m

(
~p2

2m
+ 2µ

) , sinh 2η =
µ√

~p2

2m

(
~p2

2m
+ 2µ

) , (48)

we obtain the Hamiltonian

H =
∑
~p


√√√√ ~p2

2m

(
~p2

2m
+ 2µ

)
b(~p)†b(~p)− 1

2

(
~p2

2m
+ µ

)
+

1

2

√√√√ ~p2

2m

(
~p2

2m
+ 2µ

) .
(49)

We used the fact that the summation over ~p includes −~p and combined both
contributions to simplify the expression. The ground state of this Hamilto-
nian is clearly the state annihilated by the new annihilation operators b(~p),
and excitations are created by b(~p)†. The excitation energy for the creation
operator b(~p)† agrees with that obtained from the classical analysis Eq. (41).

How is the ground state b(~p)|g〉 = 0 related to the original Fock states?
It is easy to show that the unitarity operator

U(~p) = e(a(~p)a(−~p)−a(~p)†a(−~p)†)η (50)

relates two sets of operators

U(~p)a(~p)U(~p)† = b(~p). (51)

Therefore, the state |g(~p)〉 annihilated by b(~p) is written as

|g(~p)〉 = U(~p)|0〉 = e(a(~p)a(−~p)−a(~p)†a(−~p)†)η|0〉. (52)

This state is different from the coherent state because it does not give an
expectation value of the annihilation operator a(~p), but it has a pair-wise
condensate 〈g(~p)|a(~p)a(−~p)|g(~p〉 6= 0. Therefore, it is fair to say that not only
the zero mode is condensed in Bose–Einstein condensate, non-zero modes
are also condensed when η is sizable, i.e., ~p2/2m <∼ µ. This is precisely
the momentum range where the naive formula for the occupation number
n(~p) = 1/(eβ(~p2/2m−µ) − 1) is ill-defined (negative).

Another interesting point is that there is an additional negative constant
in the Hamiltonian Eq. (49). The variational ansatz for the full Hamiltonian
is

|f〉
∏
~p

|g(~p)〉, (53)

12



where |f〉 with f =
√
µ/λ is the coherent for the zero mode and |g(~p)〉 is the

Bogoliubov transformed ground state defined in Eq. (52). The constant term
contributes to the expectation value of the full Hamiltonian in the variational
method, and makes the variational state have lower energy than the number
eigenstate.

Many phenomenological consequences of Bose–Einstein condensate can
be worked out from simple classical analyses.
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