
Hints on integrals in Midterm Problem 3

I was told repeatedly by Ed that you are having difficulties with some of
the integrals in Problem 3 in the take-home midterm. There are many ways
to do the integrals, but here are some of them.

(1) Numerical. You can always resort to numerical integration. Trick is
to perform angular integrals as much as possible, and do the radial integrals
numerically. Z ′ dependence can be factored out by changing the integration
variable from ri (i = 1, 2) to ρi = Z ′r1/a0. If you use Mathematica, it can
probably estimate the integral from 0 to ∞. If you write your own code,
make sure that you change your integration variable to make the integration
region finite; for instance using z = e−ρ or e−2ρ as the variable makes the
integration range [0,∞) to [0, 1] and can make the integrand more or less flat
thanks to the Jacobian. Convergence is much faster this way and the result
is more trustworthy. You may find logarithmic singularities, which you can
deal with by subtracting logs which can be analytically integrated.

(2) Analytical. I imagine the difficulty you are having is the integral with
powers of r12. When the power is even, r2

12 = r2
1 + r2

2 − 2r1r2 cos θ12 allows
you to perform angular integrations first, and then the rest is just integrals
over r1 and r2 which Mathematica can do. When the power is odd, you can
use the formula we used before
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In case you are curious, the first formula is the immediate consequence of the
generating function for Legendre polynomials
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When you have, say, r12 instead of 1/r12, you can expand it as
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Now you can use recursion relation of the Legendre polynomials

nPn(x) − (2n − 1)xPn−1(x) + (n − 1)Pn−2(x) = 0. (4)

In case this doens’t ring the bell, I can rewrite it as
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n
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Pn−1(x). (5)

This is basically the addition of two angular momenta, l = 1 (P1(x) = x)
and l to l + 1 and l − 1. Using this recursion relation, cos θ12Pl(cos θ12) can
be rewritten in terms of Pl±1(cos θ12). You can further change the index l to
l ± 1 and find
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To obtain general formulae for odd powers of r12, here is a way to sys-
tematically derive them. There are formulae to expand a spherical waves in
terms of spherical Bessel functions,
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Together with this, you need the power series expansion of spherical Bessel
functions (in Messiah’s sign convention for nn),
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The formula Eq. (1) is obtained from Eq. (8) by taking the limit k → 0. But
you can also take O(k2) terms to obtain the expansion of r12 in Eq. (6) and
similarly higher powers O(k2n) to obtain the expansion of r2n−1

12 in terms of
Legendre polynomials.

I hope this set of hints helps.
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