Physics 221B: Solution to Midterm, Problem # 6

3) The Morse Potential

The Morse potential mimics the inter-atomic potential in a diatomic molecule
but has the advantage of having a known exact solution. In this problem
we go through this solution, which at least in my view is quite original. The
potential is

V(r) = Vo(e 20—r0)/b _ 9e=(r=ro)/by (1)

Here we will use b = 0.92ag, ro = 1.64254a¢ and Vy = 0.116€2 /ag.

a)

See Mathematica notebook.

b)
The radial Schrédinger equation (SE) is
h? d?
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Defining £ = Kobe ("—70)/b with K, = @ and Kk = % we would like
to rewrite the SE with & as the variable.

We must be careful when changing variables in the second derivative,
since the result is not simply the second derivative with respect to &.
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After expressing the potential in terms of the new variable and parameters
the SE becomes (after multiplying by b?/£2)
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where primes stand for derivatives with respect to &.




c)

Taking ¢ large, we drop terms suppressed by =1 or ¢72. Equation (4)
becomes

Wy =0 (5)

which has solutions ¢ o e, Since ¢ — oo corresponds to r — 0 we demand
1 be finite for £ — oo leaving only 1) o< e~¢ and ¢ = 1.

d)

Inspired by this we define 1(¢) = w(&)e™¢. Working out the derivatives of
(G

V= (0 —w)e™*
"= (w" — 2w 4 w)e”¢. (6)

Substituting into Eq. (4) we can divide by e~¢
w’ — 2w + w4 (W —w)+ QKb =1 — 2?72 =0
= '+ (T 2w+ (2K - 1)ET - #2777 = 0. (7)

e)

Introducing yet another definition we write w as a power series
(0.9}
wé) =1+ aé+el+..)=) (8)
n=0
with cg = 1. Once again we rewrite the first and second derivatives of w
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Throwing Eqns. (8) and (9) into Eq. (7) gives

ch(a+n)(a+n_1)£a+n—2+zcn(a+n)£a+n—2
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The huge polynomial on the left hand side of Eq. (10) must be identically
zero for all £. This can only happen if the coefficient preceding every power
of £ vanishes separately. Lets start with the lowest power of £, o — 2, that
appears only in the first two terms and the last term of (10):

coola — 1) + coa — cor?b? =0 (11)

Since we know ¢ # 0 (recall ¢g = 1 by definition) we get an equation for «
alone

ala—1)+a—rKb2 =0
= o = £kb. (12)

The sign of o will not change the result for the energy. However, note that
demanding w — 0 (¢ — 0) for £ — 0 (which means r — co) suggests a > 0.

To get a recursion relation between ¢, and ¢, 1 lets look at the coefficient
of £2t"=2 that will appear in all the terms on the L.h.s of Eq. (10).

cn(atn)(at+n—1)+cp(a+n)—2c,_1(at+n—1)+(2Kob—1)c,—1—K*b*c, = 0
(13)
Rearranging, we get a simple equation relating ¢, to ¢,—1
200+ 2n — 2Kg + 1
C =
" (v +n)? — K2b?

Cp—1- (14)

f)

Finally we are about to find the energy levels. Demanding a normalizable
wavefunction enforces that the power series Eq. (8) stops at some n. this
will happen if for that n the coefficient of ¢,—1 in Eq. (14) will vanish.
Demanding the numerator vanish for some n will suffice

20+ 2n —2Kp+1=0. (15)



Inserting @ = kb and substituting the definitions of x and K gives a quan-
tization condition for the energy

h? 1\?
Note that when I wrote n = 1,2,... above I was cheating. This is because

beyond some N4, ~ Kob equation (15) cannot be satisfied with a real
energy. In other words, since the Morse potential is not an infinite potential
well there is only a finite number of bound states.

g)
Taking n < Kyb, we can expand Eq. (16) to leading order in n/Kyb
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E,=———-K2¥[1- 2 v — K (1-2—2 1
2/1b2 00 ( Kob) 2/1b2 00 Kob (17)

Indeed, we get evenly spaced energy levels as in a harmonic oscillator. Ex-
tracting only the fwn part we see

hKy 12Vy

The lowest vibrational excitations will be of order w calculated above. Esti-
mating this (recall that Vy = 0.116¢%/ag, p = Mproton/2 and b ~ ag) we get
Eyip ~ 0.5 €V. This is much smaller than the typical electronic excitation of

h)

2
e 1
Eelec ~ %(1 — Z) ~ 10eV.

On the other hand it is much bigger than the typical rotational excitation
(using a rigid rotator for an estimate)
R2L(1+1)

7~ 0.01eV.

Erat ~
Mproton'r()

This can be seen as justification for the Born-Oppenheimer approximation.



