
Physics 221B: Solution to Midterm, Problem # 6

3) The Morse Potential

The Morse potential mimics the inter-atomic potential in a diatomic molecule
but has the advantage of having a known exact solution. In this problem
we go through this solution, which at least in my view is quite original. The
potential is

V (r) = V0(e−2(r−r0)/b − 2e−(r−r0)/b) (1)

Here we will use b = 0.92a0, r0 = 1.64254a0 and V0 = 0.116e2/a0.

a)

See Mathematica notebook.

b)

The radial Schrödinger equation (SE) is(
− ~2

2µ
d2

dr2
+ V (r)

)
ψ(r) = Eψ(r). (2)

Defining ξ = K0be
−(r−r0)/b with K0 =

√
2µV0

~ and κ =
√

2µE
~ we would like

to rewrite the SE with ξ as the variable.
We must be careful when changing variables in the second derivative,

since the result is not simply the second derivative with respect to ξ.
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)
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=
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+ ξ
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)
(3)

After expressing the potential in terms of the new variable and parameters
the SE becomes (after multiplying by b2/ξ2)

ψ′′ +
1
ξ
ψ′ +

(
2K0b

ξ
− 1
)
ψ =

κ2b2

ξ2
ψ (4)

where primes stand for derivatives with respect to ξ.
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c)

Taking ξ large, we drop terms suppressed by ξ−1 or ξ−2. Equation (4)
becomes

ψ′′ − ψ = 0 (5)

which has solutions ψ ∝ e±ξ. Since ξ →∞ corresponds to r → 0 we demand
ψ be finite for ξ →∞ leaving only ψ ∝ e−ξ and c = 1.

d)

Inspired by this we define ψ(ξ) = w(ξ)e−ξ. Working out the derivatives of
ψ

ψ′ = (w′ − w)e−ξ

ψ′′ = (w′′ − 2w′ + w)e−ξ. (6)

Substituting into Eq. (4) we can divide by e−ξ

w′′ − 2w′ + w + ξ−1(w′ − w) + (2K0bξ
−1 − 1− κ2b2ξ−2) = 0

=⇒ w′′ + (ξ−1 − 2)w′ +
[
(2K0b− 1)ξ−1 − κ2b2ξ−2

]
= 0. (7)

e)

Introducing yet another definition we write w as a power series

w(ξ) = ξα(1 + c1ξ + c2ξ
2 + . . .) =

∞∑
n=0

cnξ
α+n (8)

with c0 = 1. Once again we rewrite the first and second derivatives of w

w′ =
∞∑

n=0

cn(α+ n)ξα+n−1

w′′ =
∞∑

n=0

cn(α+ n)(α+ n− 1)ξα+n−2. (9)
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Throwing Eqns. (8) and (9) into Eq. (7) gives

∞∑
n=0

cn(α+ n)(α+ n− 1)ξα+n−2 +
∞∑

n=0

cn(α+ n)ξα+n−2

−2
∞∑

n=0

cn(α+ n)ξα+n−1 + (2K0b− 1)
∞∑

n=0

cnξ
α+n−1

−κ2b2
∞∑

n=0

cnξ
α+n−2 = 0 (10)

The huge polynomial on the left hand side of Eq. (10) must be identically
zero for all ξ. This can only happen if the coefficient preceding every power
of ξ vanishes separately. Lets start with the lowest power of ξ, α − 2, that
appears only in the first two terms and the last term of (10):

c0α(α− 1) + c0α− c0κ2b2 = 0 (11)

Since we know c0 6= 0 (recall c0 = 1 by definition) we get an equation for α
alone

α(α− 1) + α− κ2b2 = 0
=⇒ α = ±κb. (12)

The sign of α will not change the result for the energy. However, note that
demanding w → 0 (ψ → 0) for ξ → 0 (which means r →∞) suggests α > 0.

To get a recursion relation between cn and cn−1 lets look at the coefficient
of ξα+n−2 that will appear in all the terms on the l.h.s of Eq. (10).

cn(α+n)(α+n−1)+cn(α+n)−2cn−1(α+n−1)+(2K0b−1)cn−1−κ2b2cn = 0
(13)

Rearranging, we get a simple equation relating cn to cn−1

cn =
2α+ 2n− 2K0 + 1

(α+ n)2 − κ2b2
cn−1. (14)

f)

Finally we are about to find the energy levels. Demanding a normalizable
wavefunction enforces that the power series Eq. (8) stops at some n. this
will happen if for that n the coefficient of cn−1 in Eq. (14) will vanish.
Demanding the numerator vanish for some n will suffice

2α+ 2n− 2K0 + 1 = 0. (15)
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Inserting α = κb and substituting the definitions of κ and K0 gives a quan-
tization condition for the energy

En = − ~2

2µb2

(
K0b− n+

1
2

)2

, n = 1, 2, 3, . . . (16)

Note that when I wrote n = 1, 2, . . . above I was cheating. This is because
beyond some nmax ∼ K0b equation (15) cannot be satisfied with a real
energy. In other words, since the Morse potential is not an infinite potential
well there is only a finite number of bound states.

g)

Taking n� K0b, we can expand Eq. (16) to leading order in n/K0b

En = − ~2

2µb2
K2

0b
2

(
1−

n+ 1
2

K0b

)2

∼ − ~2

2µb2
K2

0b
2

(
1− 2

n+ 1
2

K0b

)
(17)

Indeed, we get evenly spaced energy levels as in a harmonic oscillator. Ex-
tracting only the ~ωn part we see

ω =
~K0

µb
=

√
2V0

µb2
(18)

h)

The lowest vibrational excitations will be of order ω calculated above. Esti-
mating this (recall that V0 = 0.116e2/a0, µ = Mproton/2 and b ∼ a0) we get
Evib ∼ 0.5 eV. This is much smaller than the typical electronic excitation of

Eelec ∼
e2

2a0
(1− 1

4
) ∼ 10eV.

On the other hand it is much bigger than the typical rotational excitation
(using a rigid rotator for an estimate)

Erot ∼
~2l(l + 1)
Mprotonr20

∼ 0.01eV.

This can be seen as justification for the Born-Oppenheimer approximation.
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