
221B Lecture Notes on
Resonances in Classical Mechanics

1 Harmonic Oscillators

Harmonic oscillators appear in many different contexts in classical mechanics.
Examples include: spring, pendulum (with a small amplitude approxima-
tion), electric circuit with a capacitor and a coil, antenna, a single harmonics
of vibrating string or cavity or membrane, etc etc. The common equation to
harmonic oscillators is the equation of motion

ẍ + ω2
0x = 0, (1)

with the well-known solutions

x(t) = c1 cos ω0t + c2 sin ω0t. (2)

2 Resonances Without Friction

We now exert an external force on a harmonic oscillator. We choose in
particular a periodic force, F = mf cos ωt (the factor of m is there only for
the convenience). Then the equation of motion is

ẍ + ω2
0x = f cos ωt. (3)

As is known in the theory of linear differential equations, any solution to
an inhomogenous equation is given by a sum of a general solution to the
homogenous equation and a solution to the inhomogeneous equation. The
homogeneous solution is the same as the case without an external force, and
an inhomogenous solution is easy to guess:1

x(t)inhom = − f

ω2 − ω2
0

cos ωt. (4)

If we impose the initial condition x(0) = 0, ẋ(0) = 0, the solution is given by

x(t) = − f

ω2 − ω2
0

(cos ωt− cos ω0t). (5)

1You can also follow the derivation which we use in the case with friction below to
obtain it without any guessing.
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When ω 6= ω0, two oscillatory terms randomly add or subtract. It is
useful to rewrite the solution as

x(t) = − f

ω2 − ω2
0

2 sin
ω + ω0

2
t sin

ω − ω0

2
t. (6)

The maximum value of the amplitude is of the order of

xmax ∝
f

ω2 − ω2
0

. (7)

However, when ω → ω0, this maximum value diverges. In fact, the limit
ω → ω0 is given by the solution

x(t) =
f

2ω
t sin ωt. (8)

The amplitude grows linearly and indefinitely.
Of course, such a behavior occurs only in an idealized world with no

friction. In the next section we will include friction.

3 Damped Oscillator

Now we include friction proportional to the speed, such as a pendulum mov-
ing in honey, or an electric circuit with a capacitor and a coil, together with
a resistor. The equation of motion is

ẍ + gẋ + ω2
0x = 0. (9)

Because the second term represents the friction, we assume g > 0.
This equation is easy to solve. Assuming the solution of type x ∝ e−iωt,

the equation becomes
− ω2 − igω + ω2

0 = 0. (10)

This quadratic equation has solutions

ω = ω± =
1

2

[
−ig ±

√
4ω2

0 − g2

]
. (11)

In the limit of no friction, the solutions are ω = ±ω0 as expected. However,
the friction term gives an “imaginary term” to the frequency, and the oscil-
lation is necessarily damped. Remember that g > 0 and ω± have negative
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imaginary part. For instance, a simple solution is

x(t) = x(0)
1

2
[e−iω+t + e−iω−t] = x(0)e−gt/2 cos

√
ω2 − 1

4
g2t. (12)

Because of the behavior of the solution, the system is called a damped oscil-
lator.

4 Resonances With Friction

Now we exert force on the damped oscillator. The equation of motion is

ẍ + gẋ + ω2
0x = f cos ωt. (13)

There are many ways to solve this equation. Let me use Green’s function
method.

We first solve Green’s equation

G̈(t) + gĠ(t) + ω2
0G(t) = δ(t− t′). (14)

By a Fourier transform,

G(t) =
∫ ∞

−∞

dω

2π
G̃(ω)e−iωt, δ(t− t′) =

∫ ∞

−∞

dω

2π
e−iω(t−t′), (15)

Green’s equation becomes

(−ω2 − igω + ω2
0)G̃(ω) = eiωt′ . (16)

Therefore,

G(t) =
∫ ∞

−∞

dω

2π

eiωt′

−ω2 − igω + ω2
0

e−iωt

= −
∫ ∞

−∞

dω

2π

e−iω(t−t′)

(ω − ω+)(ω − ω−)
. (17)

Recall that both ω± are below the real axis. When t − t′ > 0, we can close
the contour by going back on the inifinite semicircle on the lower half plane,
and we pick up the poles at ω±. On the other hand, when t− t′ < 0, we go
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back on the upper half plane, and the contour does not encircle either pole.
Therefore,

G(t) = θ(t− t′)

[
i
e−iω+(t−t′) − e−iω−(t−t′)

ω+ − ω−

]
. (18)

Given this solution, a solution to the Eq. (13) is given as

x(t) =
∫ ∞

0
dt′G(t)f cos ωt′ =

∫ t

0
dt′

[
i
e−iω+(t−t′) − e−iω−(t−t′)

ω+ − ω−

]
f cos ωt′.

(19)
This solution automatically satisfies the boundary conditions x(0) = ẋ(0) =
0. This is an elementary integral and we find

x(t) =
1

2
f

i

ω+ − ω−[
e−iω+tei(ω++ω)t′

i(ω+ + ω)
+

e−iω+tei(ω+−ω)t′

i(ω+ − ω)
− e−iω−tei(ω−+ω)t′

i(ω− + ω)
− e−iω+tei(ω−−ω)t′

i(ω− − ω)

]t

0

=
1

2
f

i

ω+ − ω−[
eiωt − e−iω+t

i(ω+ + ω)
+

e−iωt − e−iω+t

i(ω+ − ω)
− eiωt − e−iω−t

i(ω− + ω)
− e−iωt − e−iω−t

i(ω− − ω)

]

= −1

2
f

[
eiωt

(ω+ + ω)(ω− + ω)
+

e−iωt

(ω+ − ω)(ω− − ω)

]

−f
1

ω+ − ω−

[
ω+e−iω+t

(ω+ + ω)(ω+ − ω)
− ω−e−iω−t

(ω− + ω)(ω− − ω)

]
. (20)

In the last expression, the first line represents the inhomogeneous solution
and the second line the homogenous one.

It is interesting to see the asymptotic behavior of the solution t → ∞.
The second line (the homogenous part) is exponentially damped and can be
neglected. What remains is then the first line

xasym(t) = −1

2
f

[
eiωt

(ω+ + ω)(ω− + ω)
+

e−iωt

(ω+ − ω)(ω− − ω)

]
. (21)

Recalling Eq. (10),
− ω2

± − igω± + ω2
0 = 0, (22)

4



we find

(ω+ + ω)(ω− + ω) = ω+ω− + (ω+ + ω−)ω + ω2 = −ω2
0 − igω + ω2, (23)

and

(ω+ − ω)(ω− − ω) = ω+ω− − (ω+ + ω−)ω + ω2 = −ω2
0 + igω + ω2. (24)

Therefore,

xasym(t) = −1

2
f

[
eiωt

−ω2
0 − igω + ω2

+
e−iωt

−ω2
0 + igω + ω2

]

= −1

2
f

[
eiωt(−ω2

0 + igω + ω2) + e−iωt(−ω2
0 − igω + ω2)

(−ω2
0 + ω2)2 + (gω)2

]

= −f

[
(ω2 − ω2

0) cos ωt− gω sin ωt

(ω2 − ω2
0)

2 + (gω)2

]
. (25)

Therefore, the amplitude of the oscillator is given by

xmax (t) = f
1√

(ω2 − ω2
0)

2 + (gω)2
. (26)

This is peaked at ω = ω0, and quite similar to Breit–Wigner form.
The main difference from quantum mechanics is that you see the reso-

nance in frequency, not in energy. That is because E = h̄ω requires h̄, and
hence quantum mechanics. But the point that the width in the resonance
shape is inversely related to the lifetime in exponential damping is the same.

Therefore, the asymptotic amplitude is a strongly peaked function of ω.
Unlike the case without friction, the amplitude does not keep going up even
when ω = ω0 but rather saturates. You can view it as that the resonant
frequency has moved off the real axis to ω± that cannot be reached by varying
ω along the real axis. The strength of the friction determines the width of
the peak.

If you keep exerting force for a while and then turn it off, the resonance
will be damped exponentially from that point on.
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