Physics 221B: Solutions to HW 1
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Starting with the Lippman-Schwinger equation in the notes
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where we’ve used the fact that V is diagonal in position space.
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In the last line we've used hk = v2mE and noted we can drop O(e?). (Also,
note that we can multiply € by any positive number without changing anything
since it going to zero in the end anyway).

We will solve this integral using contour methods. Assume p is a complex
variable. We want to integrate on a contour going from —oo to 400 along the real
p axis. We can close the contour on an infinitely large semi-circle going either
form above or bellow. We will choose the contour along which the integrand
is exponentially suppressed rather than enhanced. Note that the integrand has

two poles at p = £(hk + ie).

e For x — 2’ > 0: We will choose the contour in the upper half-plane and
pick up the pole at p = +(k + i€). The integral along the closed contour
(and therefore also along the real line ) is 27i times the residue:
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where we’ve taken the ¢ — 0 limit.

e For z—2' < 0: We will choose the contour in the lower half-plane, picking
up the pole at p = —hk — ie. then we get:
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where we’ve again taken € — 0. The minus sign in the second step comes
from integrating along the contour in the clockwise direction.

So we got
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Putting everything back together we can write the Lippman-Schwinger equation
in 1D:
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If the distance from the target to our detector is much larger than the spatial size
of the potential a we can expand |z — 2’| = Va2 + 22 — 2za’ ~ |z|(1 — ) =

r— 22 for 1 = |z|. Then we can rewrite eq. (1)
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Defining k' = k% = £k we get
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where f(k, k') = Varhasit [ da'e” "V (@) (a') = S5 < hk[V]Y >.

Lets analyze this for both signs of x. The plane Wave part is there both for
x > 0 and z < 0, moving in the positive direction.The scattered wave, however,
moves away from the origin in both regions. If x > 0 and k¥’ = k we get a
scattered wave ~ f(k,k)e?*®. For x < 0 and k = —k’ we get f(k, —k)e~**.
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The probability current is j = %Im(w*ﬁzp).

1L p(z) = €T —= Vo = ikelF® — *V = ik = ] = 2 which is

the plane-wave’s ‘velocity’. V- 7 = 0, obviously. Plotting the flux with
Mathematica:

Flux of plane-wave.

2. Using spherical coordinates, the gradient of a spherically symmetric is just
(:2(r),0,0). Therefore

ikr ikr ikr

- -
1/)(7’):e—:>V¢:ike——e—2:>w*V1/):iki2—i3
T r r T T
and we get
- hk
]:—27’7
mr
which looks like this:
L T S O T Y AR AR
L T S N T Y T T R P A AP AR AR
A N N N P R AR AR R A 4
A R T T N L Y B B A AR AN AR 4
L 2 T L 2 T U Y P AR AR R AR RN 4
wwwww»\rlfvvvrr
~ ~ ~ ~~~Y A r e e e
“ < 4 a a e - = = = =
R U
E R T I A A 2 L B W N N
EE T N A A A D D N T N
R S 2 2 2 R R TR W WP AR NN
VAN 2 2 20 2 B I R U U N NN
VN S 2 2 B I D DR U W UEEN

Flux of a spherical wave.



Lets look at V j We can use the well known result from electromagnetism
V-3 = 4md(r) which is indeed zero everywhere except for r = 0, but lets

prove it. In our case V-j = L2 (r%j,) = L2 (r2 -2k ) = 0 for r # 0.But,

by looking at the electric field flux of a point charge at the origin
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and using Gauss’s theorem fAj- di= [, V - jdV we find that the diver-

gence of j must be non-zero somewhere. Since we’ve shown that its zero
everywhere but the origin, it must be

P.S. for those of you who had trouble with PlotVectorField. You need to
load the package by typing <<Graphics ‘PlotField‘ before using PlotVectorField.
If it did not work, quitting and restarting Mathematica might do the trick.



