
Physics 221B: Solutions to HW 1
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Starting with the Lippman-Schwinger equation in the notes

|ψ >= |φ > +
1

E −H0 + iε
V |ψ >

and sandwiching with < x| we get

< x|ψ >=< x|φ > + < x| 1

E −H0 + iε
V |ψ > .

< x|φ > is just the plane-wave wave function 1√
2πh̄

eikx. The second term is

< x| 1

E −H0 + iε
V |ψ > =

∫

dx′ < x| 1

E −H0 + iε
|x′ >< x′|V |ψ >

=

∫

dx′ < x| 1

E −H0 + iε
|x′ > V (x′)ψ(x′)

where we’ve used the fact that V is diagonal in position space.

< x| 1

E −H0 + iε
|x′ >=

∫

dp < x| 1

E −H0 + iε
|p >< p|x′ >=

∫

dp < x|p > 1

E − p2

2m + iε
< p|x′ >=

∫

dp
eipx/h̄

√
2πh̄

1

E − p2

2m + iε

e−ipx′/h̄

√
2πh̄

=

2m

2πh̄

∫

dp
eip(x−x′)/h̄

2mE − p2 + iε
=

−m
πh̄

∫

dp
eip(x−x′)/h̄

(p− h̄k − iε)(p+ h̄k + iε)
.

In the last line we’ve used h̄k =
√

2mE and noted we can drop O(ε2). (Also,
note that we can multiply ε by any positive number without changing anything
since it going to zero in the end anyway).

We will solve this integral using contour methods. Assume p is a complex
variable. We want to integrate on a contour going from −∞ to +∞ along the real
p axis. We can close the contour on an infinitely large semi-circle going either
form above or bellow. We will choose the contour along which the integrand
is exponentially suppressed rather than enhanced. Note that the integrand has
two poles at p = ±(h̄k + iε).

• For x − x′ > 0: We will choose the contour in the upper half-plane and
pick up the pole at p = +(k + iε). The integral along the closed contour
(and therefore also along the real line ) is 2πi times the residue:

∫

dp
eip(x−x′)/h̄

(p− k − iε)(p+ k + iε)
=

1



= 2πi(p− k − iε)
eip(x−x′)/h̄

(p− h̄k − iε)(p+ h̄k + iε)

∣

∣

∣

∣

∣

p=h̄k

= 2πi
eik(x−x′)

2h̄k

where we’ve taken the ε→ 0 limit.

• For x−x′ < 0 : We will choose the contour in the lower half-plane, picking
up the pole at p = −h̄k − iε. then we get:

∫

dp
eip(x−x′)/h̄

(p− h̄k − iε)(p+ h̄k + iε)
=

= −2πi(p+ h̄k + iε)
eip(x−x′)/h̄

(p− h̄k − iε)(p+ h̄k + iε)

∣

∣

∣

∣

∣

p=−h̄k

= 2πi
e−ik(x−x′)

2h̄k

where we’ve again taken ε→ 0. The minus sign in the second step comes
from integrating along the contour in the clockwise direction.

So we got

∫

dp
eip(x−x′)/h̄

(p− h̄k − iε)(p+ h̄k + iε)
=

{

πi eik(x−x
′)

h̄k if x− x′ > 0

πi e−ik(x−x
′)

h̄k if x− x′ < 0

= πi
eik|x−x′|

h̄k
.

Putting everything back together we can write the Lippman-Schwinger equation
in 1D:

ψ(x) =
eikx

√
2πh̄

+
−mi
h̄2k

∫

dx′eik|x−x′|V (x′)ψ(x′) (1)

2

If the distance from the target to our detector is much larger than the spatial size
of the potential a we can expand |x − x′| =

√
x2 + x′2 − 2xx′ ' |x|(1 − xx′

|x|2 ) =

r − xx′

r for r = |x|. Then we can rewrite eq. (1)

ψ(x) =
eikx

√
2πh̄

+
−mi
h̄2k

∫

dx′eik(r− xx
′

r
)V (x′)ψ(x′)

Defining k′ = k x
r = ±k we get

ψ(x) =
eikx

√
2πh̄

+
−mi
h̄2k

eikr

∫

dx′e−ik′x′

V (x′)ψ(x′) =
1√
2πh̄

[

eikx + f(k, k′)eikr
]

where f(k, k′) =
√

2πh̄−mi
h̄2k

∫

dx′e−ik′x′

V (x′)ψ(x′) = −2πmi
h̄k < h̄k|V |ψ >.

Lets analyze this for both signs of x. The plane wave part is there both for
x > 0 and x < 0, moving in the positive direction.The scattered wave, however,
moves away from the origin in both regions. If x > 0 and k′ = k we get a
scattered wave ∼ f(k, k)eikx. For x < 0 and k = −k′ we get f(k,−k)e−ikx.
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The probability current is ~j = h̄
m Im(ψ∗~∇ψ).

1. ψ(x) = ei~k·~x =⇒ ~∇ψ = i~kei~k·~x =⇒ ψ∗~∇ψ = i~k =⇒ ~j = h̄k
m which is

the plane-wave’s ‘velocity’. ~∇ · ~j = 0, obviously. Plotting the flux with
Mathematica:

Flux of plane-wave.

2. Using spherical coordinates, the gradient of a spherically symmetric is just
(

∂
∂rψ(r), 0, 0

)

. Therefore

ψ(r) =
eikr

r
=⇒ ~∇ψ = ik

eikr

r
− eikr

r2
=⇒ ψ∗~∇ψ = ik

1

r2
− 1

r3

and we get

~j =
h̄k

mr2
r̂,

which looks like this:

Flux of a spherical wave.
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Lets look at ~∇·~j. We can use the well known result from electromagnetism
~∇ · r̂

r2 = 4πδ(r) which is indeed zero everywhere except for r = 0, but lets

prove it. In our case ~∇·~j = 1
r2

∂
∂r (r2jr) = 1

r2
∂
∂r

(

r2 h̄k
mr2

)

= 0 for r 6= 0.But,
by looking at the electric field flux of a point charge at the origin

∫

A

r̂

r2
· d~a = 4π

and using Gauss’s theorem
∫

A
~j · d~a =

∫

V
~∇ ·~jdV we find that the diver-

gence of ~j must be non-zero somewhere. Since we’ve shown that its zero
everywhere but the origin, it must be

~∇ ·~j = 4π
h̄k

m
δ(r).

P.S. for those of you who had trouble with PlotVectorField. You need to
load the package by typing <<Graphics‘PlotField‘before using PlotVectorField.
If it did not work, quitting and restarting Mathematica might do the trick.
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