
Physics 221B: Solutions to HW 2

1) a)

Inserting the potential V (x) = γδ(x) into the Lippmann-Schwinger equation
from HW (1) and integrating over the delta-function,

ψ(x) =
eikx

√
2π~

+
−imγ
~2k

eik|x|ψ(0). (1)

Evaluating this equation at x = 0 gives an expression which we can solve for
ψ(0),

ψ(0) =
1√
2π~

+
−imγ
~2k

eik|x|ψ(0) ⇒ ψ(0) =
1√
2π~

~
2k

~2k + imγ
,

so that

ψ(x) =
1√
2π~

(eikx − eikr imγ

~2k + imγ
). (2)

b)

In the regions x > 0 and x < 0, the potential vanishes and ψ(x) is just a
sum of same-energy plane waves which clearly satisfies the free Schrödinger
equation. What’s going on at x = 0? You might remember the condition for
the discontinuity of ∂xψ at the location of a delta function from last semester.
But if not, lets refresh our memory. We demand our wavefunction ψ will satisfy
Schrödinger equation everywhere,

− ~
2

2m
∂2

xψ(x) + V (x)ψ(x) = Eψ(x).

If V happens to be a delta function, V (x) = γδ(x), we can more easily make
sense out of this equation at x = 0 by integrating both sides over a small vicinity
of the origin.

∫ +ε

−ε

dx

[

− ~
2

2m
∂2

x + γδ(x)

]

ψ(x) = E

∫ +ε

−ε

ψ(x)dx.

In the limit ε→ 0 the right hand side vanishes. We then get

[

− ~
2

2m
∂xψ(x)

]+0

−0

+ γψ(0) = 0

or

ψ′(x)|+0
−0 =

2mγ

~2
ψ(0).
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Lets check that our solution from a) satisfies this. Reading off of equation (1)

ψ′(x) =

{

ikeikx
√

2π~
+ −imγ

~2k ikeikxψ(0) for x > 0
ikeikx
√

2π~
+ −imγ

~2k (−ik)e−ikxψ(0) for x < 0

and so

ψ′(x)|+0
−0 =

−imγ
~2k

ikψ(0) − −imγ
~2k

(−ik)ψ(0) =
2mγ

~2
ψ(0).

Alternatively, you can check that ψ satisfies the SE by careful differentiation.
Notice that

∂xe
ik|x| = iksign(x)eik|x| =⇒

∂2
xe

ik|x| = −k2[sign(x)]2eik|x| + 2ikδ(x)eik|x| = −k2eik|x| + ikδ(x)

where we’ve used [sign(x)]2 = 1 and the fact that f(x)δ(x) = f(0)δ(x) (which
is more precise in an integral, but nonetheless...). So just plugging eq. (2) into
the SE will give

− ~
2

2m
∂2

xψ(x) + γδ(x)ψ(x)

= − ~
2

2m

−k2

√
2π~

(eikx − eikr imγ

~2k + imγ
) +

~
2

2m

1√
2π~

imγ

~2k + imγ
2ikδ(x)

+
1√
2π~

(eikx − eikr imγ

~2k + imγ
)γδ(x)

=
~

2k2

2m
ψ(x) − 1√

2π~

~
2γk

~2k + imγ
δ(x) +

1√
2π~

(1 − imγ

~2k + imγ
)γδ(x)

=
~

2k2

2m
ψ(x) = Eψ(x).

c) See Mathematica notebook.

d)

The pole in f(k′, k) is at k = −imγ/~2, which corresponds to the real energy
E = −mγ2/2~

2. So we know there exists a stable bound state of that energy. In
our derivation of the Lippmann-Schwinger equation, the only place we assume
E > 0, i.e. a scattering state, is when we add the incoming plane wave φ(x) to
the right hand side to satisfy our boundary conditions. We can do this because
a continuum state by definition can have any energy > 0; in particular we can
always find a free solution φ(x) which has the same energy as our scattering state
ψ(x). This does not work for bound states which have discrete energies < 0.
But if we leave out φ(x) and fix different boundary conditions, our derivation of
the Lippmann-Schwinger equation holds for bound states too. That is, we can
read off the bound-state wavefunction from our solution to part (a):

ψbound(x) ∼ eikr
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will be a bound-state solution when we plug in k = −imγ/~2. Boundary con-
ditions for a bound state are that the wavefunction decays at both infinities,
which this clearly does for γ < 0. Normalizing,

ψbound =

√

−mγ
~2

emγr/~
2

.

It is easy to check that

− ~
2

2m

d2

dx2
emγr/~

2

+ γδ(x)emγr/~
2

=
−mγ2

2~2
emγr/~

2

.

e)

Plugging V (~x) = γδ(~x) into the 3-d Lippmann-Schwinger equation gives

ψ(~x) =
1

(2π~)3/2
ei~k~x − 2m

~2

eik|~x|

4π|~x|γψ(0). (3)

To avoid singularity at the origin we require ψ(0) = 0, but then the scattering
term vanishes, and we are left with the free plane wave

ψ(x) =

{

1
(2π~)3/2

ei~k~x, x 6= 0

0, x = 0
,

the singularity in the potential allowing the discontinuous wavefunction. This
is not exactly the planewave we would have gotten if the potential was zero

everywhere. In that case we get ψ(x) = 1
(2π~)3/2

ei~k~x. However, when doing

a scattering experiment we certainly won’t notice the change, so we can say
that a delta function potential does not scatter in 3 dimensions. Note that eq.

(3) can still be consistent at the origin only if ψ goes to zero like 1√
2π~

4π~
2

2m |~x|.
Assuming this is the case, writing eq. (3) for x → 0 indeed gives

ψ(0) =
1

(2π~)3/2
− 1

(2π~)3/2
= 0.
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2) Yukawa potential in the Born approximation

a)

By straight forward integration in the Born approximation (see e.g. lecture
notes 2),

f (1)(~k,~k′) = − 1
4π

2m
~2

∫

d~x V (~x)ei~q·~x

= − 2m
~2

1
q

∫ ∞
0 dr r2V0

e−r/a

r sin qr

= − 2mV0

~2

1
q

(

eiqr−r/a

2i(iq−1/a) − e−iqr−r/a

2i(−iq−1/a)

)∞

0

= − 2mV0

~2

1
q2+1/a2 ,

where q2 = |~k − ~k′|2 = 2k2(1 − cos θ). Therefore,

σ =
∫

dσ
dΩdΩ =

∫

2π
(

mV0

~2k2

)2 d cos θ
(1−cos θ+1/2k2a2)2

= 2π
(

mV0

~2k2

)2 1
1−cos θ+1/2k2a2

∣

∣

1

−1

= 4πa2 m2V 2

0
a2

~4

4
1+4k2a2 .

b)

As discussed in lecture, we require that the difference between the true wave-
function ψ and the free plane wave φ be small where the potential is large. We
compute in the Born approximation at the origin (relabling ~x′ → ~x):

|ψ − φ| ∼ 2m

~2

∣

∣

∣

∣

∫

d~x
eikr

4πr

V0 e
−r/a

r
eikz

∣

∣

∣

∣

� 1.

The integral is much easier to do if you integrate the r variable first (but some
people managed it the other way around with the help of Mathematica or a
table of integrals).

2m

~2

∫

2π d cos θ r2dr
eikr

4πr

V0 e
−r/a

r
eikr cos θ =

mV0

~2

∫

d cos θ
−1

ik + ik cos θ − 1/a

= −mV0

ik~2
log (cos θ + 1 − 1/ika)

∣

∣

1

−1
= −mV0

ik~2
log (1 − 2ika).

The condition for the validity of the Born approximation is

mV0

k~2
|log (1 − 2ika)| � 1.
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Recalling the the formula for the log of an imaginary number and squaring for
later convenience (even though squaring weakens the meaning of �) we get

m2V 2
0

k2~4
� 1

[log(1 + 4k2a2)]2 + [arctan(2ka)]2
. (4)

We can see that its easier satisfying the above for large k, where arctan ceases to
increase and k increases faster than its log. Alternatively, for a given momentum
we can satisfy (4) by decreasing the strength of the potential V0 or the potential
range a.

c)

The combination appearing on the left hand side of (4) happens to appear in
the total cross-section as well. This can be used to get an upper bound on σ.

σ = 4πa2 m
2V 2

0 a
2

~4

4

1 + 4k2a2
� 4πa2 4

1 + 4k2a2

k2a2

[log(1 + 4k2a2)]2 + [arctan(2ka)]2

If the huge mess that is multiplying 4πa2, which we will call f(ka), happens
to be smaller or equal to 1 then we’ve proved σ � 4πa2. (4πa2 is used as
the geometric cross-section, and not just πa2. As we saw in lecture this can
be heuristically justified by thinking about the smearing of the incoming wave-
packet compare to the classical particle.)

The Mathematica notebook bellow plots f(ka) for values of 0 < ka < 10 to
show that indeed f(ka) ≤ 1. Plotting for larger intervals shows the same. Some
of you prefered an analytic proof and showed that f(x) ≤ 1 by showing that
f(0) = 1 and f ′(x > 0) is always negative.

In[1]:= f@x_D :=
4 x2
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Log@1 + 4 x2D2 + ArcTan@2 xD2

In[3]:= Plot@f@xD, 8x, 0, 10<D
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Out[3]= � Graphics �

sol2crossec.nb 1
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