
HW #3 Solutions (221B)

1) The δ-Shell Potential

The potential
V (r) = γδ(r − a)

we are asked to consider certain scattering and quasi-bound S-wave states.
With γ > 0 this potential imitates some gross features of a nucleus: An
incoming α particle faces a repulsive electric barrier but can be trapped on
the interior by the strong nuclear force. The nucleus then is unstable to α
decay, the α tunneling out through the potential barrier.

a)

Writing the l = 0 radial Schrödinger equation (SE) for rR0(r) with the
potential above, taking the γ → ∞ limit, we simply get a particle in a
box for r < a. The wavefunction (rR0) must vanish at the origin giving
rR0 ∝ sin kr. The wavefunction must also vanish at the infinite potential
wall at r = a, requiring

sin(ka) = 0 =⇒ ka = nπ.

This is the same condition as for poles in the scattering amplitudes with
γ → ∞, as we find later.

b)

The wavefunction rR0 obeys the free 1D SE for r 6= a (with the boundary
condition that rR0 vanishes at the origin). We proceed by following the
regular prescription to finding the phase shift. We write a wavefunction
that behaves like a ‘shifted free planewave’ as r → ∞, and find the phase
shift by comparing this form with the solution to the SE. In this case, since
the potential vanishes beyond r = a we can let the asymptotic behavior of
the shifted planewave extend as close to the origin as r = a, and match to
the solution of the SE inside the shell.. We can write the wavefunction as

rR0 =

{

sin(kr) for x < a
B sin(kr + δ0) for x > a

.

We now demand the appropriate matching between the interior and the
exterior of the shell i.e. we demand continuity at r = a

sin(ka) = Asin(ka + δ0) (1)
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and we demand the regular kink in the wavefunction due to the delta func-

tion (rR0)
′|a+

a− = mγ
�
2 rR0

∣

∣

r=a

Ak cos(ka + δ0) − k cos(ka) =
mγ

~2
sin(ka) (2)

Using equations (1) and (2) we can eliminate A and go through the algebra
to solve for δ0 and get

e2iδ0 =
1 + 2mγ

�
2k

e−ika sin ka

1 + 2mγ
�
2k

eika sin ka
.

c)

In the limit γ → 0, e2iδ0 = 1 implies δ0 = 0, no scattering. In the limit
γ → ∞, e2iδ0 = e−2ika, i.e. δ0 = −ka, the hard sphere result.

d) See Mathematica notebook.

e)

Picking up from equation (53) in the lecture notes (Scattering theory III)
we need to solve

2ika = log

(

1 − 2i
~

2k

2mγ

)

+ 2inπ (3)

for the location of the poles in the S-matrix. If γ−1 is small we can expand
the log

log

(

1 − 2i
~

2k

2mγ

)

= −2i
~

2k

2mγ
− 1

2

(

2i
~

2k

2mγ

)2

+ O(γ−3). (4)

Many of you went on to plug this expansion in eq. (3) and compared real
and imaginary parts on both side. This yields the correct result, of course.
But, I think there is a shorterer way to the solution, as follows. Lets start
with O(γ−1), taking only the first two terms in the expansion. This gives a
simple equation for k

2ika = −2i
~

2k

2mγ
+ 2inπ + O(γ−2)

=⇒ kpole =
nπ

a +
�
2

2mγ

+ O(γ−2)
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Obviously, taking only the first two terms in the log expansion was not
enough. We got a real result for kpole, and we expect an imaginary part
as well. Even tough the leading imaginary part of kpole is O(γ−2) it has
a dramatic effect on the physics, as we show in the next part. Therefore
O(γ−2) cannot be neglected in the imaginary part of kpole. However, the
O(γ−2) contribution to the real part of kpole can be ignored since its effect
on the behavior of our solution is small.

Proceeding to the next order of the expansion (4) gives the desired imag-
inary part. The equation now reads

(

a +
~

2

2mγ

)

k = nπ − i

(

~
2k

2mγ

)2

+ O(γ−3).

Since the added piece already contains γ−2 we can plug the zeroth order
solution we already have k = nπ/a instead of the k on the right hand side
above. Doing this and solving for k, dropping the O(γ−3) that arises, we
get

kpole =
nπ

a +
�
2

2mγ

− i

(

~
2

2mγ

)2
(nπ)2

a3
+ O(γ−2)

where the O(γ−2) term is now real. We learn that it is often good to
do expansions of tis kind step by step, dropping higher order terms as we
encounter them.

f) See Mathematica notebook.

g)

This was the hard part of the problem set. See part 5 of the lecture notes
‘Scattering Theory III’ for a convincing analysis of this problem.

2) WKB Scattering

a)

In using the WKB method, we are using an approximation, and we must
adjust our formalism to maintain consistency within this approximation.
In particular, the phase shifts are by definition the difference in the phase
between scattered and unscattered waves, the latter being the wavefunction
for zero potential. There’s nothing subtle or duplicitous going on here; we
just have to be internally consistent: necessarily δl → 0 as V → 0.
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After expanding in angular momentum eigenstates, the Schrodinger equa-
tion reduces to the one-dimensional form

χ′′
l +

(

k2 − U(r) − l(l + 1)

r2

)

χl = 0,

where as usual χl = rRl, E =
� 2k2

2m and U(r) = 2m�
2 V (r). The one-

dimensional WKB results apply to this problem, considering an effective
potential Veff = U(r) − l(l+1)

r2 .
At sufficiently large r, where both the centrifugal barrier and the well-

behaved potential V decay to zero, a particle scattering in the potential Veff

will be in a classically allowed region. For the purposes of this problem, we
can take the WKB-approximate solution in this regime to be

χl(R) ≈ 1
√

p(R)
cos

(1

~

∫ R

r′
p(r) dr

)

, (5)

where p(r) = ~

√

k2 − U(r) − l(l+1)
r2 is the classical momentum, and r′ is

the classical turning point defined by p(r) = 0. There are some subtleties
here, but we can arrive at the right conclusion about the phase shift without
being too careful. First, equation (5) looks like it comes from matching the
exponentially damped solution to the left of the barrier, except there is a
−π/4 missing. In fact, since we have the boundary condition χl → 0 at the
origin, there will be both exponentially damped and exponentially increasing
parts in the classically forbidden region, and our matching should take this
into account. Ignoring all but the exponential factors,

Ai(−u) − Bi(−u) ∼ e−
2
3
|u|3/2 − e+ 2

3
|u|3/2

matches to

cos (
2

3
u3/2 − π

4
) − sin (

2

3
u3/2 − π

4
) =

√
2 cos (

2

3
u3/2),

which gives equation (5). As long as the U = 0 and U 6= 0 matchings are
the same, it doesn’t matter what constant phase is in (5) as far as the phase
shift is concerned. But say the potential U is sufficiently attractive. It is
possible that the classical turning point is the origin, which would change
the form of the U 6= 0 WKB solution relative to the U = 0 case. As long
as we forbid such potentials, the matching will be the same for both U 6= 0
and U = 0, and then we can simplify our lives by working with (5).
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When U = 0, we have the asymptotic form

χl(R) → 1

2i~k

(

e
i � R

r′′ � k2−
l(l+1)

r2 dr
+ e

−i � R
r′′ � k2−

l(l+1)

r2 dr
)

(R → ∞), (6)

You can identify a sum of ingoing and outgoing (roughly) spherical waves,
but this asymptotic behavior is different from that of the exact result

χl →
1

2i~k
(eikr − (−1)le−ikr).

For U 6= 0 WKB yields

χl(R) → 1
2i

�
k

(

e
i � R

r′ � k2−U(r)− l(l+1)

r2 dr
+ e

−i � R
r′ � k2−U(r)− l(l+1)

r2 dr
)

= phase
2i

�
k

(

e
2i � R

r′ � k2−U(r)−
l(l+1)

r2 dr−2i � R
r′′ � k2−

l(l+1)

r2 dr
e
+i � R

r′′ � k2−
l(l+1)

r2 dr

−e
−i � R

r′′ � k2− l(l+1)

r2 dr
)

(R → ∞),

(7)
after pulling out an overall phase. Comparing equation (7) with equation (6)
in analogy with the exact treatment, we can read off the phase shift from (7),

e2iδl = e
2i � R

r′ � k2−U(r)− l(l+1)

r2 dr−2i � R
r′′ � k2− l(l+1)

r2 dr
(R → ∞).

b)

For the hard sphere, the turning point

r′ =

{

a k2 > l(l+1)
a2

√

l(l+1)
k2 k2 < l(l+1)

a2 .

If the energy is large enough, the particle penetrates into the region of
potential and is reflected by the hard sphere; otherwise it is reflected by the

centrifugal barrier. The turning point r ′′ =
√

l(l+1)
k2 always.

Case 1, k2 < l(l+1)
a2 : In this case the particle does not have enough energy

to surmount the centrifugal barrier. It never reaches the region of potential
and so classically should not be scattered. Indeed, since r ′ = r′′ > a,

δl = lim
R→0

∫ R

r′′

√

k2 − l(l + 1)

r2
−

∫ R

r′′

√

k2 − l(l + 1)

r2
= 0.

The WKB approximation is qualitatively right—scattering should be suppressed—
but it’s not perfect. We saw in lecture that for small momenta, δl ∝ k2l+1
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The exponential tail of the wavefunction leaks into the classically forbidden
region to the potential, and so there is some scattering, even though it is
small for large l, small ka. WKB misses this essentially quantum mechanical
behavior. As energy gets large, we expect WKB to give better results....

Case 2, k2 > l(l+1)
a2 : Now r′ = a, the particle reaches the potential.

δl = lim
R→0

∫ R

a

√

k2 − l(l + 1)

r2
−

∫ R

� l(l+1)

k2

√

k2 − l(l + 1)

r2

=

∫ � l(l+1)

k2

a

√

k2 − l(l + 1)

r2
.

To integrate, substitute

r =

√

l(l + 1)

k2
sec θ,

whence the integral

∫ r′′

a

k

r

√

r2 − l(l + 1)

k2
→

∫

√

l(l + 1) tan2 θ dθ =
√

l(l + 1)(tan θ − θ).

At the upper and lower limits of integration tan θ is 0 and
√

k2a2

l(l+1) − 1,

respectively, so that

δl = −
√

k2a2 − l(l + 1) +
√

l(l + 1) arctan

√

k2a2 − l(l + 1)

l(l + 1)
.

We can easily see that this result agrees with the exact result we got for
l = 0, δl = −ka. For higher l, by plotting σl ∝ sin2 δl, as some of you did, we
can see that WKB only gives the general shape of the correct cross section
for high momenta, and is shifted from the exact solution by a phase. For
example, the following notebook compares the two for l = 10.
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Set a = 1.

In[2]:= j@l_, z_D := - Π
��������
2 z

 BesselJAl +
1
����
2
, zE; n@l_, z_D := -- Π

��������
2 z

 BesselYAl +
1
����
2
, zE

In[60]:= sigmaexact@l_, k_D :=
4 Π
���������
k2

 H2 l + 1L 
j@l, kD2

��������������������������������������������������
j@l, kD2 + n@l, kD2

In[83]:= sigmaWKB@l_, k_D :=

4 Π
���������
k2

 H2 l + 1L SinA-
"##############################
k2 - l Hl + 1L +

�!!!!!!!!!!!!!!!!!!!!
l Hl + 1L  ArcTanA$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%k2 - l Hl + 1L

���������������������������������
l Hl + 1L EE^2

In[84]:= Plot@8sigmaexact@10, kD, sigmaWKB@10, kD<, 8k, 9, 40<D
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Out[84]= � Graphics �

WKBhardsphere.nb 1
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