
Physics 221B: Solutions to HW 4

1) Fermions in the Lowest Landau Level and the
Fractional Quantum Hall Effect.

a)

Constructing a Slater determinant form ψ0 = e−(eB/4~c)z̄z and ψ1 = ze−(eB/4~c)z̄z

we get

ψ(z1, z2) =
∣∣∣∣ ψ0(z1) ψ0(z2)
ψ1(z1) ψ1(z2)

∣∣∣∣ = ∣∣∣∣ e−(eB/4~c)z̄1z1 e−(eB/4~c)z̄2z2

z1e
−(eB/4~c)z̄1z1 z2e

−(eB/4~c)z̄2z2

∣∣∣∣
= (z2 − z1)e−(eB/4~c)(z̄1z1+z̄2z2).

b)

Lets begin by noting that the Slater determinant we constructed in a) is
indeed of the desired form for N = 2. Encouraged, we continue by writing
an anti-symmetric wave function for N electrons.

ψ(z1, z2, . . . , zN ) =

∣∣∣∣∣∣∣∣∣
ψ0(z1) ψ0(z2) · · · ψ0(zN )
ψ1(z1) ψ1(z2) · · · ψ1(zN )

...
...

...
ψN (z1) ψN (z2) · · · ψN (zN )

∣∣∣∣∣∣∣∣∣ .
If a row or a column in a determinant have a common factor it can be

pulled out as a multiplying factor. Here we can factor e−(eB/4~c)z̄izi from
the i-th column. Doing this for all rows we get

ψ(z1, z2, . . . , zN ) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN
z2
1 z2

2 · · · z2
N

...
...

...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣
exp

(
−eB

~c

N∑
i=1

z̄izi

)
.

What we have left to show is∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN
z2
1 z2

2 · · · z2
N

...
...

...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣
=

N∏
i<j

(zi − zj). (1)
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Some of you recognized this as the famous Vandermonde determinant 1.
However, for completeness lets prove it.

We will use mathematical induction. Part a) can serve as a check for
N = 2. Now we will assume equation (1) is true for N − 1, and try showing
that it works for N . When playing around with determinants, we can always
add or subtract a multiple of a row from any other without changing the
result. In this case it is useful to do the following. Starting from the last row
of the l.h.s of equation (1), we subtract zN times the row above it. Doing
the same for all the rows (but the first, of course) we get

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN
z2
1 z2

2 · · · z2
N

...
...

...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
z1 − zN z2 − zN · · · zN−1 − zN 0
z2
1 − zNz1 z2

2 − zNz2 · · · z2
N−1 − zNzN−1 0

...
...

...
...

zN−1
1 − zNz

N−2
1 zN−1

2 − zNz
N−2
2 · · · zN−1

N−1 − zNz
N−2
N−1 0

∣∣∣∣∣∣∣∣∣∣∣
Now we can factor out zi − zN from the ith row. Since the last column is
all zeros but the first entry we get an (N − 1) × (N − 1) sub-determinant.

1Vandermonde was a French mathematician who lived in Paris during the late 16th
century. Since this determinant never appeared in any of his papers it is not clear why it
is named after him, even though it is what he is best known for today.
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Doing these two steps we get∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN
z2
1 z2

2 · · · z2
N

...
...

...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣
=

=
N−1∏
i=1

(zi − zN )

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 − zN z2 − zN · · · zN−1 − zN
z2
1 − zNz1 z2

2 − zNz2 · · · z2
N−1 − zNzN−1

...
...

...

zN−2
1 zN−2

2 · · · zN−2
N−1

∣∣∣∣∣∣∣∣∣∣∣
=

N−1∏
i=1

(zi − zN )
N−1∏
i<j

(zi − zj) =
N∏

i<j

(zi − zj)

where we’ve used the assumption made earlier.
We have shown

ψ(z1, z2, . . . , zN ) =
N∏

i<j

(zi − zj) exp

(
−eB

~c

N∑
i=1

z̄izi

)
.

Another elegant way of proving the Vandermode relation is by expanding
the determinant along the first column getting a polynomial in z1∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN
z2
1 z2

2 · · · zN
...

...
...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣
= AzN−1

1 +BzN−2
1 + . . .

The constants A,B, . . . are functions of all the other zs. We know that since
the determinant vanishes for every z1 → zi for i 6= 1, so we know all the roots
N − 1 of the polynomial are {z2, . . . , zN}. We can rewrite our polynomial
as

A
N∏

i=2

(z1 − zi)

Now we notice that the coefficient A is a just the sub-determinant of the
Vandermonde form for z2, . . . , zn and we can complete the proof by induc-
tion.
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c)

Laughlin’s wavefunction 2 is

ψ(z1, z2, . . . , zN ) =
N∏

i<j

(zi − zj)n exp

(
−eB

~c

N∑
i=1

z̄izi

)
.

Before we make sure the wavefunction is anti-symmetric we can restrict n by
other considerations. Anti-symmetry will force the wave function to be zero
as zi → zj (continuously). This excludes negative n’s since they will cause
the wave function to blow up as zi → zj . Non-integer n’s can cause trouble
as well because a fractional power is multi-valued (or has branch cuts).
We are therefore restricted to positive integers. Finally, we will demand
ψ → −ψ under exchange of two particles. Many of you said immediately
that this enforces n to be odd, which is correct, but requires checking that
this does not depend on N . For example, if we exchange particles k and l
(lets say k < l) the term zk − zl obviously changes sign. But, this is not the
only term in

∏N
i<j(zi − zj)n that contains zk and zl. Playing around with∏N

i<j(zi − zj)n one can see that any other sign change is compensated by
another, so effectively only zk − zl changes sign, and an odd n will do the
trick.

A simpler way of showing this is writing
∏N

i<j(zi−zj)n =
(∏N

i<j(zi − zj)
)n

and recalling that
∏N

i<j(zi − zj) is a determinant. Exchanging particles k
and l correspond to switching the kth and lth columns of the Vandermonde
determinant, resulting in an overall sign change. (that was the motivation
of using determinants for antisymmetric wavefunctions). The overall sign
change in Laughlin’s wavefunction is (−1)n, therefore n is odd.

d)

As explained in the notes on Landau Levels, the highest power of z we can
achieve in Laughlin’s wavefunction is n(N − 1) ∼ nN . This highest power
can be related to the magnetic flux by nN = eΦ/~c. So the number of
electrons, N , can be expressed as

N =
1
n

eΦ
~c
.

Since eΦ/~c is the number of available state (see notes), the fractional filling
is 1/k.

2Robert Laughlin is giving next week’s Oppenheimer lecture.
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2)The Helium Atom with Variational Method

As Prof. Jackson said in lecture, referring to this exercise: “Even at my age,
I find it is good to solve an integral once in a while.”

The Hamiltonian is

H0 =
p2
1

2m
+

p2
2

2m
+
Z0e

2

r1
+
Z0e

2

r2

∆H =
e2

r12

where Z0 = 2 was given a subscript to distinguish it from the variational
parameter Z in the trial wavefunction

ψ(r1, r2) = Ne−
Zr1

a e−
Zr2

a .

(I dropped the prime on Z). It is pretty straightforward to find that

N =
Z3

πa3

〈H0〉 = 2
Z2e2

2a
− 2

ZZ0e
2

a

We now want to evaluate 〈∆H〉. It may be useful to employ the formula
for 1

r12
in terms of Ylm, but since it will be used in HW 5 (or at least in the

solution to it) I’ll use the less elegant way this time, just to show it exists.
Since we are doing two angular integrations I’ll set r1 in the z direction (and
multiply by 4π × 2π) leaving only the θ2 integral. relabeling θ2 → θ we get〈

e2

r12

〉
=

= 8π2N2e2
∫ ∞

0
dr1

∫ ∞
0

dr2

∫ −1

1
d(cos θ)r21r

2
2

e−
2Z
a

(r1+r2)√
r21 + r22 − 2r1r2 cos θ

= 8π2N2e2
∫ ∞

0
dr1

∫ ∞
0

dr2r
2
1r

2
2e
− 2Z

a
(r1+r2) 1

r1r2
×[√

r21 + r22 + 2r1r2 −
√
r21 + r22 − 2r1r2

]
The term in the square brackets is (r1 + r2) − |r1 − r2| = 2r<. Noting
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r</(r1r2) = 1/r> we get〈
e2

r12

〉
=

= 8π2N2e2
∫ ∞

0
dr1

∫ ∞
0

dr2r
2
1r

2
2e
− 2Z

a
(r1+r2) 2

r>

= 16π2N2e2
(∫ ∞

0
dr1

∫ r1

0
r1r

2
2e
− 2Z

a
(r1+r2) +

∫ ∞
0

dr1

∫ ∞
r1

r21r2e
− 2Z

a
(r1+r2)

)
.

We can easily do this integral by hand or with Mathematica to get〈
e2

r12

〉
=

5
8
Ze2

a
.

Finally we get

E = 〈H〉 =
e2

a

(
Z2 − 2Z0Z +

5
8
Z

)
(2)

a) Z = Z0 = 2

Plugging Z = 2 into (2) we get E = −2.75 e2

a = −74.8eV. This is within 5%
of the experimental value of 78.605 eV.

b) Variational Method

Letting Z vary, we can set an upper-bound on the energy by finding the
minimal energy.

0 = ∂ZE =
e2

a

(
2Z − 2Z0 +

5
8

)
=⇒ Z = Z0 −

5
16

=
27
16

E |Z= 27
16

= −77.5eV.

This is much better— within 1.5% of experimental data. The value we get
for Z, which is smaller than 2, reflects the screening of the nuclear charge
as seen by an electron by the cloud of the other.
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