Physics 221B: Solution to HW #5
The Lithium-like Atom

The ground state will be composed of two electrons in 1s with spins up
and down and a third electron in an n = 2 state. When choosing a state for
this third electron we needn’t worry about its spin, since the Hamiltonian
does not act is spin-space. So lets just say it has spin up. If we choose the
2p state we won’t specify m, the eigenvalue L,, since the Hamiltonian is
rotationally invariant (i.e. choosing an m will not change anything in our
results).

a)
Lets start with notation. \23T>1 for example, means a particle in the state

2s which is a function of &1, with spin T. We can form a Slater determinant

1 |1ST>1 |1ST>2 |1ST>3
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and likewise for |1s22p).

b)

The unperturbed Hamiltonian is a sum of three single particle Hamiltonians.
Therefore our single particle states are eigenstates of Hg with their usual
energies. Every term in |1s22s) contains the three different single particle
states. So,

(15225| Hy|15%25) = (2E,—1 + Ep—s)(15?|15?25) = (2E,—1 + Ep—2),

and likewise for [1522p).

)

Some more notation— |¢1)1 ® |[th2)2 ® [th3)3 = |111)91)3). The expectation
value (AH) potentially contains 108 terms because our wave function con-
sists of 6 permutations, and AH is the sum of three 1/rijs. We can reduce
this number by using the anti-symmetry of the wavefunction and the or-
thogonality of single particle states as follows. For example

<¢1¢2¢3|L|¢1¢2¢3> = —<¢1?,Z)3¢2|i — ([193h2)) = <¢1¢2¢3|i|¢1¢2¢3>-
r12 r12 13
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In the last step we simply switched the labels of particles 2 and 3. Following
this we can simplify (AH) to

e? e? e? e?

(AH) =(—+ — + —) =3(—).
T2 T3 123 12

We are down to 36 terms.

The operator 1/r12 acts only on the particles at #; and Z9. In other
words,

1 1

By orthogonality, only terms with the same third state in the bra and the
ket will survive. This leaves us with the following twelve terms.’

(AH) = <r12
= 3xz 1sTlsl\ \13T13l> <1ST1$H ]13l13T>
<13T23T\ |1sT2sT) — <1ST2ST] 125T1sT)
+(1st1sT]-= |15t 1sT) — (1518t |1sT1s))
+(2s11sT|-= 25111y — (2571872 |1sT25T)
{ )= )

( )=« )

/\

+ 13123” ‘1Sl28T 1sl2s” ]23Tlsl
+ 25T151|T%|25T15l - 25Tlsl|7%|1sl2$T )

Since r12 = ro1 there are exactly two of every term.

2 2
(AH) = (1s'1sH|<—|1sT1st) — (15718t -—|1s¢15T)
T12 7’12

+ (1ST2ST]—\13T23> <1ST2ST]—\23T13>
7’12 7’12

+ (1sl2sT]—\lsl2sT> — <1sl2s”—\2sTlsl>,
712 12

and likewise for the p states.

1Sounds a bit like a beauty contest, doesn’t it? we are down to the 12 finalists...



d)

The 2nd and 6th terms vanish by orthogonality of spin wavefunctions. The
3rd and 5th terms are equal. Thus

e? e? e?
(AH) = (1s1s|—|1sls) + 2 (1s25|—|1s2s) — (1s25|—|2s1s),
12 12 12

and likewise for the p states.

e) Perturbation Theory Calculation?

In part (f), we will have to distinguish between a variational parameter
A and the charge Z in the Hamiltonian which isn’t varied, so I will use A
in the wavefunctions in this calculation. I use atomic units (in these units
e?/a = 1. To get an energy in eV, multiply the results by 27.2 eV). We need
to calculate the 3 terms in part (d) for both 2s and 2p cases. I'll do one
example and quote results for the others.

Using the expression in the lecture notes

l
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where the argument 1 in the spherical harmonics means (61, ¢1),

<182p| |182p fdgrld T Zlm 2l+1 l+1Y* (1)Yim(2)
) (226N (1)) x (YONH2Ary e Nr22Y 7 (2))
X (2X3/2e A Y0 (1)) x (N3 2Nrg €7 A2/2Y7,,0(2)).

We want to evaluate this by using the orthogonality relations for spherical
harmonics, but they don’t hold if there is other angular dependence (e.g. a
third spherical harmonic) in the integral. However, note that Y = \/% is
actually independent of angle, so we can pull it outside the integral. Then

we can evaluate the remaining 61, ¢; angular dependence,

/dCOS 91d<z>1 Y}:n(l)}/oo(l) = 51057”0.

We then use the delta functions to cancel the sum and fix l =0m=20
elsewhere. That is good because then Y;,,(2) — Ypo(2) = \/—, and then

2I thank Ed Boyda for TEXing the following sections.



there are only two remaining 65, ¢o spherical harmonics:
/dCOS 02(1(}52 Yf;n/(Q)Ylm/(Q) =1.

We are left with
<152p|%|152p> = [r3driridry % X (2X3/2e=Ar1) % (%x\?’/z)\rg eAr2/2)
X (2327 A1) s (YEN3/2 Ny e A72/2)
= %8 [ dry drg % 72y e AT gm A2,

Because of the 1/r~ we need to split the integral into two parts,

A8 2 -2\ " Loy > Loy
=— [dririe” ”{ drg — roe "2 + dro — rye” r2}.
6 0 (&) r1 T9
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Mathematica does these integrals nicely, giving %8 X SInT

gous procedures, I find

. Following analo-

(1sls|$|1sls> = %
(1525|$|1525> = %5
(1525|$|2515> = 2;—3
(152p[$|152p> = 5??—5‘
(1s2p|L|2pls) = IZA.

Setting A — Z, and then using Z = 3,

7Z 172 2%*Z
AFE 29, = % +2 ;—4 -5 N 1.0227 =~ 3.068.

This contribution raises the energy, as one would expect for electch)n repul-
sion, and is a significant offset to the zeroth-order result By = —24~ = —8L

g — 8"
When we have a 2p electron instead,

7 Z AV
AE‘1522p: 5_‘1‘2&— 7

g 5 —35 ~ 1.0947 =~ 3.282.



In total,

(EO + AE)15228
(Eo + AE) 429,

~
~

~

~

Confirming our intuition, the total Ey + AFE has smaller magnitude for the
2p than the 2s case: The 2p electron is in a more ‘circular’ orbit, so it sees
less of the nuclear charge (i.e. it is screened more by the inner electrons).

f) Variational Calculation

In our trial wavefunctions we replace Z with A as above. The zeroth-order
single-particle contributions to the energy with this wavefunction are

2

2 2
(215 125) = (2p| 55 12p) = %,

2 2
(Ls| g I1s) = %,

(1s|=2[1s) = —ZX,  (2s|=Z|2s) = (2p|=Z£|2p) = — &,

as you can easily compute. Thus

A2 )2 ZA
(Vpar (15228)| H |[tpar (15%25)) = 25+ 5 — 22X - - +1.022),
the last being the AE contribution. Minimizing with respect to A (and

taking Z=3) gives

AN~ Z — 4-1.022 ~ 2.545

9 ’ 15%2s).
Epar ~ —7.289 (1572s)
We find A < Z, properly reflecting the screening effect of the electrons.
As with Helium, the variational energy counters the over-correction from
perturbation theory. Repeating for the 1522p case,

A~ 2.514,

2
By ~ —7.110 (15°2p).



