
Physics 221B: Solution to HW #5

The Lithium-like Atom

The ground state will be composed of two electrons in 1s with spins up
and down and a third electron in an n = 2 state. When choosing a state for
this third electron we needn’t worry about its spin, since the Hamiltonian
does not act is spin-space. So lets just say it has spin up. If we choose the
2p state we won’t specify m, the eigenvalue Lz, since the Hamiltonian is
rotationally invariant (i.e. choosing an m will not change anything in our
results).

a)

Lets start with notation. |2s↑〉1 for example, means a particle in the state
2s which is a function of ~x1, with spin ↑. We can form a Slater determinant

|1s22s〉 =
1√
3!

|1s↑〉1 |1s↑〉2 |1s↑〉3
|1s↓〉1 |1s↓〉2 |1s↓〉3
|2s↑〉1 |2s↑〉2 |2s↑〉3

,

and likewise for |1s22p〉.

b)

The unperturbed Hamiltonian is a sum of three single particle Hamiltonians.
Therefore our single particle states are eigenstates of H0 with their usual
energies. Every term in |1s22s〉 contains the three different single particle
states. So,

〈1s22s|H0|1s22s〉 = (2En=1 +En=2)〈1s2|1s22s〉 = (2En=1 +En=2),

and likewise for |1s22p〉.

c)

Some more notation— |ψ1〉1 ⊗ |ψ2〉2 ⊗ |ψ3〉3 ≡ |ψ1ψ2ψ3〉. The expectation
value 〈∆H〉 potentially contains 108 terms because our wave function con-
sists of 6 permutations, and ∆H is the sum of three 1/rijs. We can reduce
this number by using the anti-symmetry of the wavefunction and the or-
thogonality of single particle states as follows. For example

〈ψ1ψ2ψ3|
1

r12
|ψ1ψ2ψ3〉 = −〈ψ1ψ3ψ2|

1

r12
− (|ψ1ψ3ψ2〉) = 〈ψ1ψ2ψ3|

1

r13
|ψ1ψ2ψ3〉.
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In the last step we simply switched the labels of particles 2 and 3. Following
this we can simplify 〈∆H〉 to

〈∆H〉 = 〈 e
2

r12
+

e2

r13
+

e2

r23
〉 = 3〈 e

2

r12
〉.

We are down to 36 terms.
The operator 1/r12 acts only on the particles at ~x1 and ~x2. In other

words,

〈ψiψjψk|
1

r12
|ψlψmψn〉 = 〈ψiψj |

1

r12
|ψlψm〉〈ψk|ψn〉.

By orthogonality, only terms with the same third state in the bra and the
ket will survive. This leaves us with the following twelve terms.1

〈∆H〉 = 3〈 e2

r12
〉

= 3 × 1

6

(

〈1s↑1s↓| e2

r12
|1s↑1s↓〉 − 〈1s↑1s↓| e2

r12
|1s↓1s↑〉

+〈1s↑2s↑| e2

r12
|1s↑2s↑〉 − 〈1s↑2s↑| e2

r12
|2s↑1s↑〉

+〈1s↓1s↑| e2

r12
|1s↓1s↑〉 − 〈1s↓1s↑| e2

r12
|1s↑1s↓〉

+〈2s↑1s↑| e2

r12
|2s↑1s↑〉 − 〈2s↑1s↑| e2

r12
|1s↑2s↑〉

+〈1s↓2s↑| e2

r12
|1s↓2s↑〉 − 〈1s↓2s↑| e2

r12
|2s↑1s↓〉

+〈2s↑1s↓| e2

r12
|2s↑1s↓〉 − 〈2s↑1s↓| e2

r12
|1s↓2s↑〉

)

.

Since r12 = r21 there are exactly two of every term.

〈∆H〉 = 〈1s↑1s↓| e
2

r12
|1s↑1s↓〉 − 〈1s↑1s↓| e

2

r12
|1s↓1s↑〉

+ 〈1s↑2s↑| e
2

r12
|1s↑2s↑〉 − 〈1s↑2s↑| e

2

r12
|2s↑1s↑〉

+ 〈1s↓2s↑| e
2

r12
|1s↓2s↑〉 − 〈1s↓2s↑| e

2

r12
|2s↑1s↓〉,

and likewise for the p states.

1Sounds a bit like a beauty contest, doesn’t it? we are down to the 12 finalists...
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d)

The 2nd and 6th terms vanish by orthogonality of spin wavefunctions. The
3rd and 5th terms are equal. Thus

〈∆H〉 = 〈1s1s| e
2

r12
|1s1s〉 + 2 〈1s2s| e

2

r12
|1s2s〉 − 〈1s2s| e

2

r12
|2s1s〉,

and likewise for the p states.

e) Perturbation Theory Calculation2

In part (f), we will have to distinguish between a variational parameter
λ and the charge Z in the Hamiltonian which isn’t varied, so I will use λ
in the wavefunctions in this calculation. I use atomic units (in these units
e2/a ≡ 1. To get an energy in eV, multiply the results by 27.2 eV). We need
to calculate the 3 terms in part (d) for both 2s and 2p cases. I’ll do one
example and quote results for the others.

Using the expression in the lecture notes

1

r12
=

∑

l,m

4π

2l + 1

rl
<

rl+1
>

Y ∗
lm(1)Ylm(2),

where the argument 1 in the spherical harmonics means (θ1, φ1),

〈1s2p| 1

r12
|1s2p〉 =

∫

d3~r1d
3~r2

∑

l,m
4π

2l+1

rl
<

rl+1
>

Y ∗
lm(1)Ylm(2)

×(2λ3/2e−λr1Y ∗
00(1)) × (

√
6

12
λ3/2λr2 e

−λr2/2Y ∗
1m′(2))

×(2λ3/2e−λr1Y00(1)) × (
√

6

12
λ3/2λr2 e

−λr2/2Y1m′(2)).

We want to evaluate this by using the orthogonality relations for spherical
harmonics, but they don’t hold if there is other angular dependence (e.g. a
third spherical harmonic) in the integral. However, note that Y ∗

00 = 1√
4π

is

actually independent of angle, so we can pull it outside the integral. Then
we can evaluate the remaining θ1, φ1 angular dependence,

∫

d cos θ1dφ1 Y
∗
lm(1)Y00(1) = δl0δm0.

We then use the delta functions to cancel the sum and fix l = 0,m = 0
elsewhere. That is good because then Ylm(2) → Y00(2) = 1√

4π
, and then

2I thank Ed Boyda for TEXing the following sections.
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there are only two remaining θ2, φ2 spherical harmonics:

∫

d cos θ2dφ2 Y
∗
1m′(2)Y1m′ (2) = 1.

We are left with

〈1s2p| 1

r12
|1s2p〉 =

∫

r21dr1 r
2
2dr2

1

r>
× (2λ3/2e−λr1) × (

√
6

12
λ3/2λr2 e

−λr2/2)

×(2λ3/2e−λr1) × (
√

6

12
λ3/2λr2 e

−λr2/2)

= λ8

6

∫

dr1 dr2
1

r>
r21 r

4
2 e

−2λr1 e−λr2 .

Because of the 1/r> we need to split the integral into two parts,

=
λ8

6

∫

dr1 r
2
1 e

−2λr1

{

∫ r1

0

dr2
1

r1
r42 e

−λr2 +

∫ ∞

r1

dr2
1

r2
r42 e

−λr2

}

.

Mathematica does these integrals nicely, giving λ8

6
× 118

81λ7 . Following analo-
gous procedures, I find

〈1s1s| 1

r12
|1s1s〉 = 5λ

8

〈1s2s| 1

r12
|1s2s〉 = 17λ

34

〈1s2s| 1

r12
|2s1s〉 = 24λ

36

〈1s2p| 1

r12
|1s2p〉 = 59λ

35

〈1s2p| 1

r12
|2p1s〉 = 7·24λ

38 .

Setting λ→ Z, and then using Z = 3,

∆E1s22s =
5Z

8
+ 2

17Z

34
− 24Z

36
≈ 1.022Z ≈ 3.068.

This contribution raises the energy, as one would expect for electron repul-
sion, and is a significant offset to the zeroth-order result E0 = −9Z2

8
= −81

8
.

When we have a 2p electron instead,

∆E1s22p =
5Z

8
+ 2

59Z

35
− 7 · 24Z

38
≈ 1.094Z ≈ 3.282.
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In total,

(E0 + ∆E)1s22s ≈ −7.057
(E0 + ∆E)1s22p ≈ −6.843.

Confirming our intuition, the total E0 + ∆E has smaller magnitude for the
2p than the 2s case: The 2p electron is in a more ‘circular’ orbit, so it sees
less of the nuclear charge (i.e. it is screened more by the inner electrons).

f) Variational Calculation

In our trial wavefunctions we replace Z with λ as above. The zeroth-order
single-particle contributions to the energy with this wavefunction are

〈1s| p2

2m |1s〉 = λ2

2
, 〈2s| p2

2m |2s〉 = 〈2p| p2

2m |2p〉 = λ2

8
,

〈1s|−Z
r |1s〉 = −Zλ, 〈2s|−Z

r |2s〉 = 〈2p|−Z
r |2p〉 = −Zλ

4
,

as you can easily compute. Thus

〈ψvar(1s
22s)|H|ψvar(1s

22s)〉 = 2
λ2

2
+
λ2

8
− 2Zλ− Zλ

4
+ 1.022λ,

the last being the ∆E contribution. Minimizing with respect to λ (and
taking Z=3) gives

λ ≈ Z − 4

9
· 1.022 ≈ 2.545,

Evar ≈ −7.289
(1s22s).

We find λ < Z, properly reflecting the screening effect of the electrons.
As with Helium, the variational energy counters the over-correction from
perturbation theory. Repeating for the 1s22p case,

λ ≈ 2.514,
Evar ≈ −7.110

(1s22p).
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