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HW #11

1. Bogoliubov Transformation

(@)

This is a straight-forward algebra

[b, b'] = [acoshn+a' sinhn, a' coshn+ asinhn)
=[a, a"1cosh® n+[a’, a] sinh®

= cosh? 5 — sinh? 5

=1

(b)

Using b, b' defined in (a), we can solve for a, a as
a=bcoshn—-b'sinhy
a’ =b' coshn — bsinhn
Substituing them into the Hamiltonian ,we find
H=twd a+ % V(aa+a' a")

=hw(b' coshn — bsinhn) (bcoshn — b sinhn)

+% V(0" coshnp — bsinh ) + (bcoshn - b' sinh n)z)
=b" b (hwcosh® j — V cosh 7 sinh 1)

+b b' (1w sinh? i — V cosh 17 sinh 77)

+b b(—% wsinhncoshn + % V (sinh? n+ cosh? )

+b" b (~h wsinhycoshn + 5 V(cosh® i + sinh” 7))
Because 7 is a free parameter, we can choose it at our convenience. We choose 7 such that the coefficients of b b and b b*
vanish,

—hwsinhncoshn + % V( cosh? n+ sinh? n) =0.
—hwsinh2n+ Vcosh2n=0.

and hence

n= % arctanh % or et = Zx_t\‘;

With this choice, the Hamiltonian has the familiar form
H =b" b (hw cosh? n— V cosh 5y sinh )

+b bt (h w sinh? i — V cosh 77 sinh 1)

= b' b(h w(cosh® 5 + sinh? i) — 2 V cosh 77 sinh 1)) + (% w sinh® 5 — V cosh 7 sinh 7))

=b b\ () = V2 + L (V) - V2 —ho)
We find that the ground state is annihilated by b, its energy is % (\/ (hw)y —V2 —h w), and the excitated states are obtained

by acting b" each time raising the energy by \/ (hw)’ = V2.

The system does not have a stable ground state if V > 71 w.
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(c)

We use the Hausdorff formula,
e* Be™* =B +[A, Bl + 5 [A, [A, Bl + 5;[A, [A, [A, B]]] + -
Inour case, A= (aa—a' a")n/2,B=a.

Let us first calculate the multiple commutators.

B=a

[A, B] = %[aa -a'a',al=na'.

[A, [A, B]] = %[aa -d a',na'l=n?a.

[A, [A, [A, B]]]l = %[aa -dd,na=nd

etc. By inspection, it is clear that the 2 n-th commutator is 7" a, while the 2 n + 1-th commutator 77"*! a'.

Now back to the Hausdorff formula,
eABet=a+nad +yma+pa+o
=acoshn+a'sinhn=>b

Putting them together, we find b = U a U~'indeed.

We can also see that it is a unitarity operator. The exponent is anti-Hermitian,
A =(% (aa—a' a%))' = % (@ a' —aa)= —% (aa—d a")=-A.

Therefore, UT = (¢*)" = ¢4’ = ¢4 = U~!, and hence it is unitary.
(d)

The ground state is annihilated by b, and hence Ua U™! | gs) = 0.

Acting U~! on both sides, we find a(U~! | gs)) = 0, namely that the state U~ | gs) is annihilated by the operator a. Therefore,

U'lgs) =10,

and hence

|gs)=U|0).

Because U is a power series in % (aa—a' a') which changes numbers by two units, we find that | gs) can be expanded as
lgs) = Z:,o:() Cnl2n

Using the fact that it is annihilated by b, (a cosh i + a' sinh ) | gs) = 0, we find
blgs) =(acoshn+a' sinhn) X" can|2n

=Zm_oczn(m|2n—1>coshn+v2n+1 |2n+1 sinhn
=Zm_0(czn+2 V2n+2coshn+c, V2n+1 sinhn)|2n+1 =0.

It means
2n+l
Conia =C2 n(— S+ tanh n).
Therefore,
2n-DI!
Crn =co(=1)" ((;n)!)! tanh” 5
The norm is

® @a-D 2
Rewriting it with the Gamma function,

- © 2" I(n+1/2)/N 7T 2n 1 © Te1/2) 2n
c? = "7 tanh = — E tanh
0 Zn:() n A\ n

2T+ weo T@tD)
Mathematica gives this infinite series
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1
Gamma [n + ?]
In[28]:= Sum[— x", {n, O, 00}]

Gamma [n + 1]

Oout[28]= \/1/7T
- X
Therefore,
i) 1 V7 2 12
¢y ? = =— ———— = (1 —tanh
0 Vr \/l—tanh2 n ( n)
and hence

co =(1 — tanh? 7])1/4.

Putting everything together, the ground state of the Hamiltonian is given in terms of the number states

| gs)=(1- tanh2 77)1/4 Z:oz() (_1)n (2(;;)1!)!!! tanh” n | 2n).

The Bogoliubov transformation appears not only in the BEC but also in optics. The laser is a coherent state, and one can
realize Bogoliubov transformed ones called the "squeezed states." They have been under active research.

2. Superfluid Vortex
(@)

The solution is z-independent, and hence is a function of r and 6 only. We use the chain rule
(V,):( cosf sin 8 )(Vx)

Vg —rsinf rcosf/\V,
and find

Vi) _ | (rcosf —sinf\ V,
(Vy)_ " ( rsinf cos@ )(Vg )
Therefore,

V. (Vs ing _ 1 (Fc0os@ —sin@\ . f'(r)\ ;o
(vy)‘/"(vy)f(’)e =+ rsing cos )(inf(r))e '
The momentum density is

- L (rcosf —sinf f1()
J= 2mif(r)7(rSiIl9 COSQ)(l'nf(”))-’-C.C

_ b 5, (—sinf
= S0 ( cos 6 )

On the other hand, the number density is
p=v = fr’.

The velocity field is their ratio,

> l _ b —sin @

VE _’"’(COSQ)'

For the plotting purpose, we take i =m = 1.

In[7]:= << Graphics PlotField"

n=1
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1
In[8]:= PlotVectorField[— {-y, x}, {x, -1, 1},

x2 + y?
{y, -1, 1}, ScaleFactor -» None, ScaleFunction - (.05 # &) ]
Power::infy : Infinite expression % encountered . MOre...

w::indet : Indeterminate expression 0 ComplexInfinity encountered. MOTre..

w::indet : Indeterminate expression 0 ComplexInfinity encountered. MOTre...
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Out[8]= = Graphics -

n=-2
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In[9]:= PlotVectorField[ {-y, x}, {x, -1, 1},
x2 + y?

{y, -1, 1}, ScaleFactor -» None, ScaleFunction - (.05 # &) ]

1
Power::infy : Infinite expression 0 encountered . MOre...

Indeterminate expression 0 ComplexInfinity encountered. MOre...

w::indet :
©::indet : Indeterminate expression 0 ComplexInfinity encountered. MOre..
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out[9]= = Graphics -

n=3



HWI1.nb

Inf[10]:= PlotVectorField[ {-y, x}, {x, -1, 1},

x2 + y?
{y, -1, 1}, ScaleFactor -» None, ScaleFunction -» (.05 # &) ]
Power::infy : Infinite expression % encountered . MOre...

w::indet : Indeterminate expression 0 ComplexInfinity encountered. MOTre..

w::indet : Indeterminate expression 0 ComplexInfinity encountered. MOTre...
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Out[10]= =- Graphics -

(b)

The circulation is obtained from the loop integral of the velocity field

3:%:%(;;:99)’ y

an (—SIN —sin

Kzggﬁ( cos 6 )r( cos 6 )d@
2anh _ nh

m T m
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(c)

We start with the Euler-Lagrange equation obtained from the Lagrangian,

iy SR gy -y gy =0,

We now subsitute our Ansatz into the equation: ¥(r, 6, t) = e"? f(r).

Because it is static ¢ = 0, we find

7 &’ 1 d n’ 3 _
TG v T dr — ) fruf-Af =0
We now try to cast it to a form as independent of the parameters as possible.

d? 1 d n? 2mu 2mA g3 _
(frtr & m)f+ -5 =0
We introduce the variable

\/2 my

n =P

Then the equation becomes

& 1 d n’ A3
(dpr + 5 a5 — )+ =y =0
Finally, we introduce the function
f=\%¢

which satisfies
&2 1 d n? 3 _
(a5 +5 75~ F)+9-¢"=0
The equation is now completely free from physical parameters except for the integer 7.

We solve numerically with the boundary conditions ¢(0) = 0, ¢(c0) = 1. Instead of imposing the boundary condition stritcly
at the origin, which causes all kinds of problems,we cheat a little bit and impose it slightly off the origin.

1 1
vortex = NDSolve[{y' "[x] + —y ' [x] - - yix] +y[x] -y[x]® =0,
X X
y[10] =0, y'[107%] = 1.166380374636}, y, {x, 107¢, 20}]

{{y - InterpolatingFunction[{{1.x107%, 20.}}, <>]}}

Plot[y[x] /. vortex[[1]], {x, 10°®, 20}, PlotRange » {0, 1.1}]

15 20
- Graphics -

This way, we see that the vortex solution exists for the classical Schrodinger field with a repulsive self-interaction potential,
as observed in the atomic BEC as well as liquid He-II.



