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We solve Problem 11.3 in Peskin–Schroeder.
Gross–Neveu model is given by the Lagrangian density

L =
N∑
i

ψ̄ii6∂ψi +
1

2
g2

0

(
N∑
i

ψ̄iψi

)2

(1)

for i = 1, · · · , N . Note that the sum over i is taken inside the parenthes before
taking the square, which is not very clear in the way Peskin–Schroeder writes
the Lagrangian density. I’ve put the subscript g0 to indicate that it is the
bare coupling.

This model describes massless spin 1/2 fermions in one spatial dimen-
sion with an attractive short-range potential. What the model does is that
fermions get bound by the attractive force, and the fermion pair compos-
ite condenses to break a discrete Z2 symmetry. Because of the condensate,
fermions acquire a mass. Therefore the dynamics is very similar to what
actually happens in four-dimensional QCD (theory of strong interaction) or
BCS (Bardeen–Cooper–Schrieffer) theory of superconductivity. Especially in
the limit where N is large with g2

0N fixed, this result is supposed to be exact.
We will see why this is the case in the course of the problem.

(a)

By substituting ψi → γ5ψi, we find

ψ̄iψi = ψ†iγ
0ψi → ψ†iγ

5γ0γ5ψi = −ψ†γ0ψi = −ψ̄iψi. (2)

We used the fact that γ5 is hermitian and anticommutes with γµ. Therefore,
the interaction term (ψ̄iψi)

2 remains the same. The kinetic term is also
invariant,

ψ̄ii 6∂ψi = ψ†iγ
0iγµ∂µψi → ψ†iγ

5γ0iγµ∂µγ
5ψi = ψ†iγ

0iγµ∂µψi = ψ̄ii6∂ψi (3)

because γ5 is anti-commuted twice with gamma matrices. Therefore, ψi →
γ5ψi is a symmetry of the theory. It is actually a Z2 symmetry: doing it
twice is trivial since (γ5)2 = 1.

In addition, this model has U(N) symmetry that rotates the complex
basis of fermion fields ψi.
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(b)

The Dirac field in D-dimension has the mass dimension (D − 1)/2. This
is because the action is dimensionless (in the unit ~ = c = 1) while the
spacetime volume has mass dimension −D, and hence the Lagrangian density
has mass dimension D. The kinetic term has a single derivative, which has
mass dimension one. Therefore the two Dirac field operators have each mass
dimension (D − 1)/2. In two dimensions D = 2, it is 1/2. Then the four-
fermion operator has mass dimension two, which compensates the spacetime
integral. Therefore the coupling constant g is dimensionless. In general, an
interaction described by a dimensionless constant is renormalizable according
to the power counting.

(c)

We show this by a simple Gaussian integral.∫
Dσ exp

[
i

∫
d2x

{
−σψ̄iψi −

1

2g2
0

σ2

}]
=

∫
Dσ exp

[
i

∫
d2x

{
− 1

2g2
0

(
σ + g2

0ψ̄iψi
)2

+
1

2
g2

0(ψ̄iψi)
2

}]
=

(
det

1

g2
0

)−1/2

exp

[
i

∫
d2x

1

2
g2

0(ψ̄iψi)
2

]
. (4)

The overall numerical factor det 1
g20

(not matter how divergent it may be) is

only a numerical factor and we don’t care. It drops out from any expectation
values.

Note that σ = −g2
0ψ̄iψi on average and it can be regarded as the field

that describes a fermion bound state.
There is one subtlety when we use the dimensional regularization. The

spacetime integral is D-dimensional, and hence the fermion field has the
dimension (D − 1)/2 = 1

2
− ε. On the other hand, to keep the coupling

constant g0 dimensionless, the dimension of σ is D/2 = 1 − ε. Then their
coupling σψ̄ψ has dimension 2−3ε, which does not yield dimensionless acton
upton 2 − 2ε dimensional spacetime integral. Therefore, we need to modify
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the Lagrangian as ∫
d2−2εx

[
ψ̄ii 6∂ψi − µεσψ̄iψi −

1

2g2
0

σ2

]
(5)

where µ is an arbitrary energy scale (called “renormalization scale”) associ-
ated with the dimensional regularization.

(d)

The path integral over the fermion fields yield the determinant∫
DψiDψ̄i exp

[
i

∫
dDx

{
ψ̄ii6∂ψi − µεσψ̄iψi

}]
= [Det(i 6∂ − σ)]N . (6)

Since we are interested in the effective potential, not the full 1PI effective
action, for σ, we can regard σ(x) = σ to be a spacetime constant. Hence this
is nothing but the determinant of N fermions of mass m = µεσ. Here, the
determinant over the functional space Det including the Dirac indices, and
that over the Dirac indices only det is distinguished.

We compute the determinant in the following way. First of all, we use

Det(i6∂ −m) = exp Tr ln(i 6∂ −m). (7)

In two dimensions,

Tr ln(i 6∂ −m) =

∫
d2xd2p

(2π)2
tr ln(6p−m) =

∫
d2xd2p

(2π)2
ln(−p2 +m2). (8)

Here, the trace over the functional space Tr including the Dirac indices, and
that over the Dirac indices only tr is distinguished.

The last step can be shown in many ways. One explicit way is using
γ0 = σ2, γ1 = iσ1, and

det(6p−m) = det

(
−m −ip0 − ip1

ip0 − ip1 −m

)
= m2 − (−ip0 − ip1)(ip0 − ip1) = m2 − (p0)2 + (p1)2 = m2 − p2. (9)

Hence,
tr ln(6p−m) = ln det( 6p−m) = ln(−p2 +m2). (10)
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Another way that applies to any dimensions uses the fact that

6p2 = γµγνpµpν =
1
2

(γµγν + γνγµ)pµpν = gµνpµpν = p2. (11)

On the other hand,
tr6p = trγµpµ = 0. (12)

Therefore, in the basis where 6p is diagonal, it must be

6p = diag(
√
p2, · · · ,

√
p2,−

√
p2, · · · ,−

√
p2). (13)

In two dimensions, Dirac matrices are two-by-two (in D-dimensions, they are 2[D/2]-by-
2[D/2] where [.] is Gauss’ symbol for the largest integer less than or equal to the argument).
Then we find

tr ln(6p−m) = 2[D/2]−1(ln(
√
p2 −m) + ln(−

√
p2 −m)) = 2[D/2]−1 ln(−p2 +m2). (14)

Back to the determinant, we follow Eqs. (11.71,11.72) in Peskin–Schroeder∫
dDp

(2π)D
ln(−p2 +m2) = −iΓ(−D/2)

(4π)D/2
(m2)D/2 = −iΓ(−1 + ε)

(4π)1−ε (m2)1−ε,

(15)
where we used D = 2− 2ε. Expanding in ε,

Tr ln(i6∂ −m) = i
1

4π

(
1

ε
+ 1− γ + ln 4π +O(ε)

)
(m2)1−ε

= i
1

4π

[(
1

ε
+ 1− γ + ln 4π

)
m2 −m2 lnm2 +O(ε)

]
(16)

Therefore,

e−i
R
dDxVeff (σ) =

∫
DψiDψ̄i exp

[
i

∫
dDx

{
ψ̄ii6∂ψi − µεσψ̄iψi −

1

2g2
0

σ2

}]
= exp

[
i

∫
dDx

{
− 1

2g2
0

σ2 +
N

4π

(
1

ε
+ 1− γ + ln 4π

)
σ2 − N

4π
σ2 ln

σ2

µ2

}]
.

(17)

In the MS scheme, we renormalize 1
ε
− γ + ln 4π into the coupling

1

2g2
=

1

2g2
0

− N

4π

(
1

ε
− γ + ln 4π

)
, (18)
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and we obtain the effective potential

Veff (σ) =
1

2g2
σ2 +

N

4π
σ2

(
ln
σ2

µ2
− 1

)
. (19)

If you employ a different renormalization scheme, the difference is only a
change in the definition of 1/g2 → 1/g2 + c by a (finite) constant c. It
changes the effective potential to

Veff (σ) =
1

2g2
σ2 +

N

4π
σ2

(
ln
σ2

µ2
− 1 +

2π

N
c

)
, (20)

which can be absorbed into the definition of µ.
Because the physics should be independent of the arbitrary dimensionful

scale µ we introduced into the dimensional regularization, we require

µ
∂

∂µ
Veff = 0, (21)

which gives

µ
∂

∂µ

1

g2
=
N

π
, (22)

and hence the coupling is asymptotically free.
We can also calculate the determinant with a sharp momentum cutoff.

This makes the correspondence to the Wilsonian view more transparent. We
first make a Wick rotation∫

d2p

(2π)2
ln(−p2 +m2) = i

∫
d2pE
(2π)2

ln(p2
E +m2). (23)

Since we are only interested in the m = σ dependence of the result, we can
subtract an (infinite) constant independent of m,

i

∫
d2pE
(2π)2

[
ln(p2

E +m2)− ln p2
E

]
= i

∫ Λ d2pE
(2π)2

∫ m2

0

dµ2 1

p2
E + µ2

= i

∫ m2

0

dµ2 1

4π
ln

Λ2

µ2

= i
1

4π
m2

(
ln

Λ2

m2
+ 1

)
. (24)
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Therefore, we find the effective potential

Veff (σ) =
1

2g2
0

σ2 +
N

4π
σ2

(
ln
σ2

Λ2
− 1

)
. (25)

Here, one can observe the Wilsonian renormalization group evolution of the
bare coupling defined with the cutoff Λ. As one change the cutoff Λ by in-
tegrating out a slice in the momentum space, the bare coupling constant
g2

0 changes accordingly without changing physics. This gives the cutoff-
independence of the effective potential

Λ
∂

∂Λ
Veff (σ) = 0, (26)

which gives

Λ
∂

∂Λ

1

g2
0

=
N

π
. (27)

Again, the coupling is asymptotically free.

(e)

We find the minimum of the effective potential at

dVeff

dσ2
=

1

2g2
+
N

4π
ln
σ2

µ2
= 0, (28)

and hence
σ2 = µ2e−2π/Ng2 . (29)

There are two solutions, σ = ±µe−π/Ng2 , which signals the spontaneous
breaking of the Z2 symmetry with two ground states. At the minimum, σ
is finite and hence the fermions have a finite mass m = |σ| = µe−π/Ng

2
.

The renormalization-scheme-dependent change in 1/g2 to 1/g2 + c of course
changes the expression by a factor e−πc/N but cannot change the fact that
the discrete symmetry is broken. σ is the order parameter of this symmetry
breaking.

If we use the momentum cutoff, we find instead

σ2 = Λ2e−2π/Ng20 . (30)
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This result is an example of the phonomenon called “dimensional trans-
mutation.” The original theory appeared scale-invariant because it did not
contain any dimensionful parameters. However, the renormalization forces
one to regularize the theory, in our case dimensional regularization, which
necessarily makes the theory not scale-invariant and introduces a dimension-
full parameter. In the end it develops symmetry breaking at an energy scale
exponentially suppressed compared to the cutoff.

It is also worth computing the terms with derivatives in power series in ∂µσ. The
Feynman rule of ψ-ψ-σ vertex is −iµε. Because the fermions have “mass” m = σ, we
compute the two-point function for σ with finite momentum in D = 2− 2ε dimensions,

−N(−iµε)2

∫
dDk

(2π)D
tr

i

6k −m
i

6k + 6p−m

= −Nµ2ε

∫
dDk

(2π)D

∫ 1

0

dz
tr(6k +m)( 6k + 6p+m)

[k2 + 2zk · p+ zp2 −m2]2

= −Nµ2ε

∫
dDk

(2π)D

∫ 1

0

dz
tr(6k − z 6p+m)(6k + (1− z)6p+m)

[k2 + z(1− z)p2 −m2]2

= −Nµ2ε

∫
dDk

(2π)D

∫ 1

0

dz
2(k2 − z(1− z)p2 +m2)
[k2 + z(1− z)p2 −m2]2

= −2Nµ2ε

∫
dDk

(2π)D

∫ 1

0

dz

[
1

k2 + z(1− z)p2 −m2
− 2

z(1− z)p2 −m2

[k2 + z(1− z)p2 −m2]2

]
= − 2iN

(4π)1−εµ
2ε

∫ 1

0

dz(−Γ(ε) + 2Γ(1 + ε))[−z(1− z)p2 +m2]−ε

=
2iN
4π

(
1
ε
− γ + ln 4π − 2− ln

m2

µ2

)
− 2iN

4π

∫ 1

0

dz ln
−z(1− z)p2 +m2

m2
(31)

Together with the tree-level two-point function − i
g20

, we find the total two-point function

Γ(p2) = − i

g2
0

+
2iN
4π

(
1
ε
− γ + ln 4π − 2− ln

m2

µ2

)
− 2iN

4π

∫ 1

0

dz ln
−z(1− z)p2 +m2

m2

= − i

g2
+
iN

2π

(
−2 +

2π
Ng2

)
− iN

2π

∫ 1

0

dz ln
−z(1− z)p2 +m2

m2

= − iN
π
− iN

2π

∫ 1

0

dz ln
−z(1− z)p2 +m2

m2
(32)

The two-point function has a zero at p2 = 4m2 because∫ 1

0

dz ln[−z(1− z)4 + 1] = −2 (33)

Namely, there is a pole for the two-point Green’s function G(p2) = Γ(p2)−1 for σ at
p2 = 4m2 and hence σ is a particle of mass 2m.
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We interpret this result that the fermion composite σ has the potential Veff (σ) with
a finite vacuum expectation value and has a normal kinetic term, and hence propagates
as a physical bound state even though it was originally just a convenient tool to rewrite
the Lagrangian. It makes sense that the mass of σ is 2m. The attractive force between
fermions is 1/g2 = (Ng2)/N , and in the large N limit with the ’t Hooft coupling Ng2

fixed, the attractive force is 1/N . Therefore, in the large N limit, the bound state has a
mass given by the mass of the constituents, namely 2m, with negligible binding energy.

Another important point is the piece at the lowest order in p2

2iN
4π

∫ 1

0

dz z(1− z) p
2

m2
= i

N

12π
p2

m2
. (34)

Going back to the coordinate space, it is nothing but the term

i

∫
d2x

N

24π
1
m2

(∂µσ)2 (35)

in the 1PI effective action iΓ[σ] with the positive (correct) coefficient for the kinetic term.
The fact that is comes with the correct sign is important, because it justifies a posteori
a constant σ gives lower energy than a jaggy σ, and hence it was correct to study the
effective potential.

(f)

Since the result Z =
∫
DσeiΓ[σ] is still meant to be integrated over the field σ, the above

analysis still misses corrections from the σ-loops. However, the above result is exact in the
large N limit defined the following way. Consider the limit N → ∞ while keeping g2

0N
fixed. The latter is called ’t Hooft coupling . In this limit, the entire effective action Γ[σ]
is proportional to N :

Γ[σ] = N

[
−Tr ln(i6∂ − σ) +

1
2g2

0N
σ2

]
. (36)

For large N , the exponent oscillates wildly and hence we can use the steepest descent
method, namely picking only the stationary point of the exponent. This way, our analysis
looking only for the stationary point of the effective action is justified in the large N limit.
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