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(a)

The Lagrangian density in the problem is

L = −1

4
(Fµν)

2 + (Dµφ)†Dµφ − m2φ†φ − λ

6
(φ†φ)2, (1)

where φ(x) is a complex scalar field in four spacetime dimensions (except for
part (h)), and we are interested in the theory when m2 = −µ2 < 0. The
covariant derivative includes the vector potential

Dµφ = (∂µ + ieAµ)φ. (2)

I don’t know why they chose this funny normalization for the coupling λ.
The Feynman rule for the four-scalar vertex is −i2λ

3
.

First we work out the scalar potential

V (φ) = −µ2φ†φ +
λ

6
(φ†φ)2. (3)

The minimum is at

∂V

∂φ†

∣

∣

∣

∣

φ=φ0

= −µ2φ0 +
λ

3
φ†

0φ
2
0 = 0, (4)

and hence

φ†
0φ0 =

3

λ
µ2. (5)

Using the gauge invariance of the theory φ(x) → e−iα(x)φ(x), one can always
make the vacuum expectation value φ0(x) real, positive, and constant,

φ0 =

√

3

λ
µ. (6)
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Expanding the field around this minimum as φ = φ0 + 1√
2
(σ + iπ), the

potential is

V = −λ

3
φ2

0

(

(φ0 +
1√
2
σ)2 +

1

2
π2

)

+
λ

6

(

(φ0 +
1√
2
σ)2 +

1

2
π2

)2

= −λ

3
φ2

0

(

φ2
0 +

√
2φ0σ +

1

2
σ2 +

1

2
π2

)

+
λ

6

(

φ2
0 +

√
2φ0σ +

1

2
σ2 +

1

2
π2

)2

= −λ

6
φ4

0 +
λ

3
φ2

0σ
2 +

λ

3
√

2
φ0(σ

2 + π2)σ +
λ

24
(σ2 + π2)2. (7)

Next, we work on the kinetic term for the scalar field.

(Dµφ)†Dµφ

=

[

1√
2
∂µ(σ − iπ) − ieAµ

(

φ0 +
1√
2
(σ − iπ)

)]

[

1√
2
∂µ(σ + iπ) + ieAµ

(

φ0 +
1√
2
(σ + iπ)

)]

=
1

2
(∂µσ)2 +

1

2
(∂µπ)2 +

e√
2
φ0Aµ∂

µπ +
e√
2
Aµ(σ∂µπ − π∂µσ)

+e2φ2
0A

2
µ +

√
2e2φ0A

2
µσ +

1

2
e2A2

µ(σ2 + π2) (8)

Therefore, the complete Lagrangian density is

L = −1

4
(Fµν)

2 + e2φ2
0A

2
µ +

1

2
(∂µσ)2 − λ

3
φ2

0σ
2 +

1

2
(∂µπ)2 +

√
2 eφ0Aµ∂

µπ

+
e√
2
Aµ(σ∂µπ − π∂µσ) +

√
2e2φ0A

2
µσ +

1

2
e2A2

µ(σ2 + π2)

− λ

3
√

2
φ0(σ

2 + π2)σ − λ

24
(σ2 + π2)2. (9)

We have removed the “cosmological constant” −λ
6
φ4

0. All terms in the first
line are quadratic in fields and therefore can be regarded the unperturbed
bare Lagrangian, while the second and third lines are cubic or quartic in
fields and give interactions among particles which we treat as perturbation.
The second term in the first line is the mass term for the gauge field. Namely,
the electromagnetism has become short-ranged, with its range givey by the
Compton wave length.
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(b)

The problem asks us to use the Landau gauge ∂µAµ = 0. Then the last term
in the first line of Eq. (9) vanishes upon integration by parts. To compute the
effective potential for φ, we need to know the mass spectrum as its function.
The first line of Eq. (9) tells us that there is a massive vector field of mass
2e2φ2

0, massive scalar field of mass 2λ
3
φ2

0, and a massless scalar field. The
calculation follows closely that in Chapter 11.4 in the book.

To compute the effective action, we would like to calculate the path in-
tegral for a general background φ = φcl. For the effective potential, we
need to consider a spacetime constant φcl. Then, thanks to the U(1) gauge
invariance, we can take φcl to be real without a loss of generality. Fortu-
nately, we have already computed the mass terms for φ0. Therefore, the
vector boson mass for the general φcl is simply obtained by replacing φ0 by
φcl. Namely, we have one massive vector of mass 2e2φ2

cl. For the massive
scalar field, we need to reexpand the potential as φcl + 1√

2
(σ + iπ). We find

m2
σ = 1

2
V ′′(φcl) = 1

2
(2m2 + 2λφ2

cl) = m2 + λφ2
cl. For φcl = φ0, it recovers the

mass we worked out before. π has mass m2 + λ
3
φ2

cl which vanishes for φcl = φ0

because of the spontaneously broken U(1) symmetry.
One important point to be careful about is the determinant of the massive

vector field in this Lagrangian. Because we have used the Landau gauge
∂µA

µ = 0, we can rewrite the Lagrangian for the vector field as

−1

4
(Fµν)

2 + e2φ2
clA

2
µ

= −1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) + e2φ2

clAµA
µ

= −1

2
∂µAν(∂

µAν − ∂νAµ) + e2φ2
clδ

ν
µAνA

µ

=
1

2
Aν(�δν

µ − ∂ν∂µ + 2e2φ2
clδ

ν
µ)Aµ

=
1

2
Aν

[

(� + 2e2φ2
cl)

(

δν
µ − ∂ν∂µ

�

)

+ 2e2φ2
cl

∂ν∂µ

�

]

Aµ. (10)

We used integration by parts and dropped the surface terms, and used the
notation � = ∂µ∂

µ.
The differetial operators

PT = δν
µ − ∂ν∂µ

�
, PL =

∂ν∂µ

�
(11)
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are projection operators, because P 2
T = PT , P 2

L = PL, PT PL = PLPT = 0. It
is easier to see in the momentum space,

PT = δν
µ − kνkµ

k2
, PL =

kνkµ

k2
, (12)

where one can regard them as four-by-four matrices. PT has rank three, while
PL rank one. In the Landau gauge ∂µA

µ = ikµAµ = 0, PL vanishes and we
are left with only three independent components of Aµ in the space projected
by PT . Therefore, the path integral over the gauge field is equivalent to three
independent scalar fields,

∫

DAT
µei

R

d4x(− 1

4
(Fµν)2+e2φ2

cl
A2

µ) = (det(� + 2e2φ2
cl))

−3/2. (13)

Here, PTAT
µ = AT

µ is the remaining three components after taking care of the
Landau gauge condition ∂µA

µ = 0.
The path integral over the massive scalar σ of course is

∫

Dσei
R

d4x( 1

2
(∂µσ)2−(m2+λφ2

cl
)σ2) = (det(� + m2 + λφ2

cl))
−1/2. (14)

The path integral over the scalar π yields a similar determinant with a mass
m2 + 1

3
λφ2

cl,

∫

Dπei
R

d4x(1

2
(∂µσ)2−(m2+ 1

3
λφ2

cl
)σ2) = (det(� + m2 +

1

3
λφ2

cl))
−1/2. (15)

The effective potential is obtained using the by-now familiar formula
(11.71,72)1

ln det(∂2 + m2) = Tr log(∂2 + m2)

=

∫

dDx

∫

dDk

(2π)D
log(−k2 + m2)

= −i

∫

dDx
Γ(−D/2)

(4π)D/2
(m2)D/2. (16)

1Peskin–Schroeder does not use � = ∂2

t − ∂2

x − ∂2

y − ∂2

z because the number of vertices
of a box (four) refers to the four-dimensional space time, in much the same way that
∆ = ∂2

x + ∂2

y + ∂2

z refers to Laplacian in three-dimensional space. They use ∂2 = ∂µ∂µ for
arbitrary dimension D.
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Here, the expression is analytically continued to D = 4 − 2ǫ dimensions.
Now we can find the effective potential e−i

R

dDxV (φcl). We find the one-loop
piece

∆Veff (φcl)

= −Γ(−D/2)

(4π)D/2

[

3

2
(2e2φ2

cl)
D/2 +

1

2
(m2 + λφ2

cl)
D/2 +

1

2

(

m2 +
λ

3
φ2

cl

)D/2
]

.

(17)

We later add V (φcl), the classical potential, to obtain the effective potential.
As usual, we expand around four-dimensions and use MS renormalization

scheme. We find

∆Veff (φcl) = − 1

2(4π)2

(

1

ǫ
− γ + ln 4π +

3

2

)

[

3

2
(2e2φ2

cl)
2−ǫ +

1

2
(m2 + λφ2

cl)
2−ǫ +

1

2

(

m2 +
λ

3
φ2

cl

)2−ǫ
]

(18)

The counter terms are defined to be ǫ → 0 limit of the combination 1
ǫ
− γ +

ln 4π in the MS scheme,

Vct(φcl) = − 1

2(4π)2

(

1

ǫ
− γ + ln 4π

)

M−2ǫ

[

3

2
(2e2φ2

cl)
2 +

1

2
(m2 + λφ2

cl)
2 +

1

2

(

m2 +
1

3
λφ2

cl

)2
]

. (19)

Here, the renormalization scale M was introduced to ensure the counter
terms have the correct dimensions. Note that it has the form of a constant,
quadratic term, and quartic term of φcl and indeed corresponds to the renor-
malization of the parameters m2 and λ (and cosmological constant) of the
original Lagrangian, namely

δλ =
3

2(4π)2

(

1

ǫ
− γ + ln 4π

) [

3(2e2)2 + λ2 +
λ2

9

]

M−2ǫ, (20)

δm2 =
1

2(4π)2

(

1

ǫ
− γ + ln 4π

)

λm2

[

1 +
1

3

]

M−2ǫ. (21)
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Their sum has a regular ǫ → 0 limit,

∆Veff + Vct

=
1

64π2

[

3(2e2φ2
cl)

2

(

ln
2e2φ2

cl

M2
− 3

2

)

+ (m2 + λφ2
cl)

2

(

ln
m2 + λφ2

cl

M2
− 3

2

)

+

(

m2 +
1

3
λφ2

cl

)2 (

ln
m2 + λφ2

cl/3

M2
− 3

2

)

]

. (22)

It is convenient to define M̄2 = M2e3/2 so that

∆Veff + Vct =
1

64π2

[

3(2e2φ2
cl)

2 ln
2e2φ2

cl

M̄2
+ (m2 + λφ2

cl)
2 ln

m2 + λφ2
cl

M̄2

+

(

m2 +
1

3
λφ2

cl

)2

ln
m2 + λφ2

cl/3

M̄2

]

. (23)

This result could have been obtained by blindingly applying the general formula for
the one-loop effective potential

∆Veff (φ) =
∑

i

(−1)F

64π2
m4(φ)

(

ln
m2(φ)

M2
− 3

2

)

=
∑

i

(−1)F

64π2
m4(φ) ln

m2(φ)

M̄2
. (24)

Here i refers to each degree of freedom, and (−1)F is +1 for bosons, −1 for fermions.

Now we add the tree-level potential to obtain the full one-loop effective
potential

Veff (φcl) = m2φ2
cl +

λ

6
φ4

cl +
1

64π2

[

3(2e2φ2
cl)

2 ln
2e2φ2

cl

M̄2

+(m2 + λφ2
cl)

2 ln
m2 + λφ2

cl

M̄2
+

(

m2 +
1

3
λφ2

cl

)2

ln
m2 + λφ2

cl/3

M̄2

]

.(25)

(c)

Because the problem tells us to regard λ ≈ e4 ≪ 1, the one-loop piece
proportional to λ2 ≈ e8 is higher order than the piece ∝ e4. Therefore the
expression further simplifies to

Veff (φcl) =
λ

6
φ4

cl +
3e4

16π2
φ4

cl ln
2e2φ2

cl

M̄2
. (26)
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This potential develops a minimum at

∂Veff

∂φ2
cl

=
λ

3
φ2

cl +
3e4

16π2

(

2φ2
cl ln

2e2φ2
cl

M̄2
+ φ2

cl

)

= 0, (27)

and hence

ln
2e2φ2

cl

M̄2
= −1

2
− 16π2λ

9e4
. (28)

Therefore,

φ2
cl = M̄2 1

2e2
E−16π2λ/9e4−1/2. (29)

Here, I employed Mathematica’s notation E for the base of natural logarithm
to distinguish it from the electric charge e.

This is yet another example of dimensional transmutation. The original
theory with m2 = 0 is scale-invariant because there is no dimensionful param-
eter in the theory. The scale M̄ was introduced as the renormalization scale,
where λ and e2 are “measured.” The theory, however, turns out to develop
a mass scale φcl at the minimum of the potential exponentially suppressed
relative to the renormalization scale.

(d)

We now go back to the effective potential Eq. (25) with m2 6= 0, but still
disregarding the pieces proportional to λ2 ≈ e8 ≪ e4.

Veff (φcl) = m2φ2
cl +

λ

6
φ4

cl +
3

64π2
(2e2φ2

cl)
2 ln

2e2φ2
cl

M̄2
. (30)

For large m2 of either sign, the one-loop piece is insignificant in deciding
whether the symmetry breaking. However, we have already seen that the
symmetry breaking occurs for m2 = 0. The question is what happens when
m2 > 0 is small so that the one-loop piece is important.

For this purpose, it is useful to regard the potential as a function of
x = 2e2φ2

cl/M̄
2

f(x) =
1

M̄4
V (x) = ax + bx2 + cx2 log x. (31)

For us, a = m2/(2e2M̄2), b = λ/6(2e2)2, c = 3/64π2. We regard b ≈ c, while
a is small to study this region. It is clear that for positive a, the potential rises
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Figure 1: The potential with b = c = 1 for a = 1, 0.2, 0.164, 0.15, 0.135,
0.12, from the top left to bottom right.

from the origin. However, once x is finite, x2 log x gives a negative contribu-
tion and can bring the potential down if a is small. Therefore, it overcomes
the positive slope at the origin with a > 0 and produces a minimum away
from the origin.

Just by plotting the potential by Mathematica for various choices of pa-
rameters, indeed the potential shows the expected behavior. For example for
b = c = 1, one can see a symmetry-breaking minimum for a < 0.135. Even
for larger a up to about 0.164, there is a local minimum where the system
may be trapped for a finite lifetime.

Therefore, this potential exhibits a first-order phase transition. Namely
that as m2 is lowered from the high temperature, the potential has a well-
defined minimum at the origin. But even for m2, it first develops a local
minimum away from the origin which comes down as m2 is lowered further.
At a critical but positive value of m2, the symmetry-breaking minimum be-
comes lower than the origin. At this value, the system coexists in both
phases, akin to the coexistence of vapor and water at T = 100◦C. At a lower
m2, the symmetry-breaking minimum is the absolute minimum and the sys-
tem would eventually fall into this minimum. But because of the barrier, the
system may be “stuck” at the origin as the system is cooled, and it becomes
“supercooled.” It is a quantum phenomenon for the system to tunnel to the
true minimum.
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p

p − q

q
−ie(2p − q)µ −ie(2p + q)ν

p
ie2gµν

Figure 2: The vacuum polarization diagrams for the photon due to the scalar
loop.

(e)

To work out the beta functions, we can completely ignore m2 for this purpose,
as we are only interested in the evolution of dimensionless couplings e and
λ. Therefore, we can work with the complex scalar field φ as a whole, rather
than its real and imaginary parts σ and π.

(e.1) βe

We first study the beta function for the electromagnetic coupling e. Be-
cause of the Ward identity Z1 = Z2, we only need to compute the vacuum
polarization diagram Fig. 2 and hence Z3.

With the dimensional regularization, the second diagram in Fig. 2 van-
ishes identically. The first diagram is

iΠµν(q) = (−ie)2

∫

dDp

(2π)D
(2p − q)µ(2p − q)ν i

p2

i

(p − q)2
(32)

Using the by-now-standard methods, we find

iΠµν(q)

= e2

∫ 1

0

dz

∫

dDp

(2π)D

(2p − q)µ(2p − q)ν

(p2 − 2zp · q + zq2)2

= e2

∫ 1

0

dz

∫

dDp

(2π)D

(2p − (1 − 2z)q)µ(2p − (1 − 2z)q)ν

(p2 + z(1 − z)q2)2

= e2

∫ 1

0

dz

∫

dDp

(2π)D

4pµpν + (1 − 2z)2qµqν

(p2 + z(1 − z)q2)2

= e2

∫ 1

0

dz

∫

dDp

(2π)D

4
D

gµνp2 + (1 − 2z)2qµqν

(p2 + z(1 − z)q2)2
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= e2

∫ 1

0

dz

∫

dDp

(2π)D

{ 4
D

gµν

p2 + z(1 − z)q2
+

− 4
D

gµνz(1 − z)q2 + (1 − 2z)2qµqν

(p2 + z(1 − z)q2)2

}

= e2

∫ 1

0

dz
i

(4π)2−ǫ

{

−Γ(−1 + ǫ)
4

D
gµν [−z(1 − z)q2]1−ǫ

+Γ(ǫ)

[

− 4

D
gµνz(1 − z)q2 + (1 − 2z)2qµqν

]

[−z(1 − z)q2]−ǫ

}

= e2

∫ 1

0

dz
i

(4π)2−ǫ

{

−(Γ(−1 + ǫ) − Γ(ǫ))
4

D
gµν [−z(1 − z)q2]1−ǫ

+Γ(ǫ)(1 − 2z)2qµqν [−z(1 − z)q2]−ǫ
}

= e2

∫ 1

0

dz
i

(4π)2−ǫ

{

−(2 − ǫ)Γ(−1 + ǫ)
4

D
gµν [−z(1 − z)q2]1−ǫ

+Γ(ǫ)((1 − z)2 − 2z(1 − z) + z2)qµqν [−z(1 − z)q2]−ǫ
}

= e2 i

(4π)2−ǫ

{

−2Γ(−1 + ǫ)gµν [−q2]1−ǫB(2 − ǫ, 2 − ǫ)

+Γ(ǫ)qµqν [−q2]−ǫ(2B(3 − ǫ, 1 − ǫ) − 2B(2 − ǫ, 2 − ǫ)
}

= e2 i

(4π)2−ǫ
2B(2 − ǫ, 2 − ǫ)Γ(−1 + ǫ)(q2gµν − qµqν)[−q2]−ǫ

= −i
e2

(4π)2

1

3

(

1

ǫ
− γ + ln 4π +

8

3

)

(q2gµν − qµqν)[−q2]−ǫ

= iΠ(q2)(q2gµν − qµqν). (33)

This is added to the photon propagator in the usual way,

(−ie)
−igµν

q2
(−ie) + (−ie)

−igµρ

q2
iΠ(q2)(q2gρσ − qρqσ)

−igσν

q2
(−ie) + · · ·

=
igµνe2

q2(1 − Π(q2))

=
igµνe2

q2
[

1 + e2

(4π)2
1
3

(

1
ǫ
− γ + ln 4π + 8

3

)

[−q2]−ǫ
]

=
igµνe2(M)

q2

∣

∣

∣

∣

q2=−M2

+ finite. (34)

Therefore, the effective electric charge depends on the momentum scale,

e2(M) =
e2

1 + e2

(4π)2
1
3

(

1
ǫ
− γ + ln 4π + 8

3

)

M−2ǫ
(35)
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q

p − q

p
−ie(p + q)µ −ie(p + q)ν

p
ie2gµν

Figure 3: The 1PI two-point function of scalars due to the gauge interaction.

Fixing the bare coupling e2, we find

βe = M
de

dM
=

e3

48π2
, (36)

as stated in the problem.

(e.2) γ

In order to compute the beta function of the coupling λ, we need to know
the wave function renormalzation of the scalar field. As we discussed in the
class, there is no wave function renormalization for the scalar field due to the
φ4 interaction at the one-loop level. Therefore, we only need to consider the
gauge interation.

The second diagram in Fig. 3 does not contribute to the wave function
renormalization and hence is not important to us. With the dimensional
regularization, actually the second diagram identically vanishes

iΣ2 =

∫

dDq

(2π)D
ie2gµν

−i

q2

(

gµν − (1 − ξ)
qµqν

q2

)

= e2

∫

dDq

(2π)D

D − 1 + ξ

q2
= 0.

(37)
For the purpose of computing the wave function renormalization, we do not
need to keep the mass of the scalar finite; it simplifies the calculation. From
the first diagram, we find the contribution to the two-point function

iΣ1 = (−ie)2

∫

dDq

(2π)D
(p+q)µ

i

q2
(p+q)ν

−i

(p − q)2

[

gµν − (1 − ξ)
(p − q)µ(p − q)ν

(p − q)2

]

.

(38)
We first compute the piece without (1 − ξ). We find

−e2

∫

dDq

(2π)D

(p + q)2

q2(p − q)2
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= −e2

∫ 1

0

dz

∫

dDq

(2π)D

(p + q)2

(q2 − 2zp · q + zp2)2

= −e2

∫ 1

0

dz

∫

dDq

(2π)D

(q + (1 + z)p)2

(q2 + z(1 − z)p2)2

= −e2

∫ 1

0

dz

∫

dDq

(2π)D

q2 + (1 + z)2p2

(q2 + z(1 − z)p2)2

= −e2

∫ 1

0

dz

∫

dDq

(2π)D

(

1

q2 + z(1 − z)p2
+

(1 + z + 2z2)p2

(q2 + z(1 − z)p2)2

)

= −e2

∫ 1

0

dz
i

(4π)2−ǫ

(

−Γ(−1 + ǫ)

Γ(1)
[−z(1 − z)p2]1−ǫ +

Γ(ǫ)

Γ(2)
(1 + z + 2z2)p2[−z(1 − z)p2]−ǫ

)

= −e2

∫ 1

0

dz
i

(4π)2−ǫ
[−p2]1−ǫ

(

−Γ(−1 + ǫ)

Γ(1)
[z(1 − z)]1−ǫ − Γ(ǫ)

Γ(2)
((1 − z)2 + 3z + z2)[z(1 − z)]−ǫ

)

= −e2 i

(4π)2−ǫ
[−p2]1−ǫ

(

−Γ(−1 + ǫ)

Γ(1)
B(2 − ǫ, 2 − ǫ)

−Γ(ǫ)

Γ(2)
[B(1 − ǫ, 3 − ǫ) + 3B(2 − ǫ, 1 − ǫ) + B(3 − ǫ, 1 − ǫ)]

)

= −e2 i

(4π)2−ǫ
[−p2]1−ǫ

(

−2

ǫ
+ 4 + 2γ + O(ǫ)

)

= −i
2e2

(4π)2
p2[−p2]−ǫ

(

1

ǫ
+ 2 − γ + O(ǫ)

)

. (39)

The piece proportional to (1−ξ) is a little more complicated. Instead of work-
ing it out completely, we just extract the pole piece. We use the Feynman
integral

1

a2b
= − ∂

∂a

1

ab
= − ∂

∂a

∫ 1

0

dz
1

[za + (1 − z)b]2
=

∫ 1

0

dz
2z

[za + (1 − z)b]3
. (40)

We obtain

e2(1 − ξ)

∫

dDq

(2π)D

1

q2

1

(p − q)2

(p2 − q2)2

(p − q)2

12



= e2(1 − ξ)

∫ 1

0

dz

∫

dDq

(2π)D

2z(p2 − q2)2

[q2 − 2zp · q + zp2]3

= e2(1 − ξ)

∫ 1

0

dz

∫

dDq

(2π)D

2z((q + zp)2 − p2)2

[q2 + z(1 − z)p2]3

= e2(1 − ξ)

∫ 1

0

dz

∫

dDq

(2π)D

2z(q2 + 2zp · q − (1 − z2)p2)2

[q2 + z(1 − z)p2]3

= e2(1 − ξ)

∫ 1

0

dz

∫

dDq

(2π)D

2z((q2)2 + 4z2(p · q)2 − 2(1 − z2)p2q2 + finite)

[q2 + z(1 − z)p2]3

= e2(1 − ξ)

∫ 1

0

dz

∫

dDq

(2π)D

2z((q2)2 + ( 4
D

z2 − 2(1 − z2))p2q2 + finite)

[q2 + z(1 − z)p2]3

= e2(1 − ξ)

∫ 1

0

dz
i

(4π)2
2z

{

3

ǫ
[−z(1 − z)p2]1−ǫ

+

(

4

D
z2 − 2(1 − z2)

)

p2 1

ǫ
[−z(1 − z)p2]−ǫ + finite

}

= e2(1 − ξ)
2i

(4π)2

∫ 1

0

dz

{

−3

ǫ
(z2 − z3)p2[−p2]−ǫ

+
(

3z3 − 2z
)

p2 1

ǫ
[−p2]−ǫ + finite

}

= e2(1 − ξ)
2i

(4π)2

{

−3

ǫ

1

12
p2[−p2]−ǫ − 1

4
p21

ǫ
[−p2]−ǫ + finite

}

= −e2(1 − ξ)
i

(4π)2

1

ǫ
p2[−p2]−ǫ. (41)

Adding both contributions, we find

iΣ = i
e2

(4π)2

1

ǫ
p2[−p2]−ǫ(−2 − (1 − ξ)) = −i

e2

(4π)2

1

ǫ
p2[−p2]−ǫ(3 − ξ). (42)

Together with the tree-level piece ip2, the 1PI two-point function up to the
one-loop order is

iΓ(2)(p2) = −ip2 + iΣ1 = −ip2

(

1 +
e2

(4π)2

1

ǫ
(3 − ξ)[−p2]−ǫ

)

+ regular. (43)

We impose the renormalization condition

iG(2)(p2 = −M2) =
1

iΓ(2)(p2 = −M2)
=

iZ2(M)

p2

∣

∣

∣

∣

p2=−M2

, (44)
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and we find the wavefunction renormalization factor

Z(M) = 1 +
e2

(4π)2

1

ǫ
(3 − ξ)M−2ǫ. (45)

Therefore,

γ =
1

2
M

d

dM
ln Z = − e2

(4π)2
(3 − ξ). (46)

For the Landau gauge, ξ = 0 and hence γ = − 3e2

(4π)2
.

(e.3) βλ

Of course we can compute the three-point and four-point functions to work
out the beta functions. But we can do it in a much easier way using
Callan–Symanzik equation (Peskin–Schroeder (13.25)) on the effective po-
tential Eq. (25) with m2 = 0,

[

M
∂

∂M
+ βλ

∂

∂λ
+ βe

∂

∂e
− γφcl

∂

∂φcl

]

V (φcl) = 0. (47)

Each term of the equation is

M
∂

∂M
V (φcl) =

−2

64π2

[

3(2e2φ2
cl)

2 + (λφ2
cl)

2 +

(

1

3
λφ2

cl

)2
]

, (48)

βλ
∂

∂λ
V (φcl) = βλ

1

6
φ4

cl + higher orders, (49)

βe
∂

∂e
V (φcl) = higher orders, (50)

γφcl
∂

∂φcl
Vφcl

= γ
2λ

3
φ4

cl + higher orders. (51)

We find

βλ =
12

64π2

[

3(2e2)2 + (λ)2 +

(

1

3
λ

)2
]

+6
2λ

3
γ =

1

24π2

[

54e4 + 5λ2 − 18λe2
]

.

(52)

(e.4) Brute Force

We can of course compute the beta function by brute force Feynman diagram
calculations. We use the bare perturbation theory, and the coupling constants
e and λ are the bare couplings with 2ǫ dimensions.

14



p

p + q

Figure 4: The 1PI three-point function of scalars and a photon due to the
φ4 interaction. It identically vanishes.

Figure 5: The 1PI three-point function of scalars and a photon at O(e3).

(e.4.1) O(eλ) Vertex Correction

The vertex correction to e at O(eλ) is given in Fig. 4. However, we know it
should vanish because it would give a contribution to Z1 at O(λ), but there
is no contribution to Z2 at O(λ) to satisfy the Ward identity Z1 = Z2. We
can verify that it vanishes identically. In other words,

−i
2λ

3
(−ie)

∫

dDp

(2π)D
(2p + q)µ i

p2

i

(p + q)2

=
2eλ

3

∫

dDp

(2π)D

∫ 1

0

dz
(2p + q)µ

(p2 + 2zp · q + zq2)2

=
2eλ

3

∫

dDp

(2π)D

∫ 1

0

dz
(2p + (1 − 2z)q)µ

(p2 + z(1 − z)q2)2

=
2eλ

3

∫

dDp

(2π)D

∫ 1

0

dz
(1 − 2z)qµ

(p2 + z(1 − z)q2)2
(53)

The point is that the numerator (1− 2z) is odd under the change of variable
z → 1 − z, but the denominator is even. Therefore the result vanishes upon
z-integration.

(e.4.2) O(e3) Vertex Correction

The vertex correction to the electromagnetic coupling at O(e3) comes from
the diagrams in Fig. 5. Again the Ward identity requires Z1 = Z2, and we

15



have computed the latter already. We compute the divergent parts only. The
first diagram without the (1 − ξ) piece is

(−ie)3

∫

dDk

(2π)D
(p + p′ + 2k)µ(2p + k)ν(2p′ + k)ρ i

(p + k)2

i

(p′ + k)2

−igνρ

k2

= −e3

∫

dDk

(2π)D
(p′ + p + 2k)µ (2p + k) · (2p′ + k)

(p + k)2(p′ + k)2k2

= −e32

∫ 1

0

d3zδ(1 −
∑

i

zi)
dDk

(2π)D

(p + p′ + 2k)µ(2p + k) · (2p′ + k)

[k2 + 2z1p · k + 2z2p′ · k + z1p2 + z2p′2]3

= −e32

∫ 1

0

d3zδ(1 −
∑

i

zi)
dDk

(2π)D
((1 − 2z1)p + (1 − 2z2)p

′ + 2k)µ

((2 − z1)p − z2p
′ + k) · ((2 − z2)p

′ − z1p + k)

[k2 + z1(1 − z1)p2 + z2(1 − z2)p′2 − 2z1z2p · p′]3

= −e32

∫ 1

0

d3zδ(1 −
∑

i

zi)
dDk

(2π)D

((1 − 2z1)p + (1 − 2z2)p
′)µk2 + kµ((2 − 2z1)p + (2 − 2z2)p

′) · k + finite

[k2 + z1(1 − z1)p2 + z2(1 − z2)p′2 − 2z1z2p · p′]3

= −e32

∫ 1

0

d3zδ(1 −
∑

i

zi)[(2 − 3z1)p + (2 − 3z2)p
′]µ

i

(4π)2
Γ(ǫ) + finite

= −e3(p + p′)µ i

(4π)2
Γ(ǫ) + finite. (54)

The gauge-dependent piece is

(−ie)3

∫

dDk

(2π)D
(p + p′ + 2k)µ(2p + k)ν(2p′ + k)ρ i

(p + k)2

i

(p′ + k)2

ikνkρ

k2

1 − ξ

k2

= e3(1 − ξ)

∫

dDk

(2π)D
(p′ + p + 2k)µ (2p + k) · k (2p′ + k) · k

(p + k)2(p′ + k)2(k2)2

= e3(1 − ξ)6

∫ 1

0

d3zδ(1 −
∑

i

zi)
dDk

(2π)D

z3(p + p′ + 2k)µ(2p + k) · k (2p′ + k) · k
[k2 + 2z1p · k + 2z2p′ · k + z1p2 + z2p′2]4

= e3(1 − ξ)6

∫ 1

0

d3zδ(1 −
∑

i

zi)
dDk

(2π)D
z3((1 − 2z1)p + (1 − 2z2)p

′ + 2k)µ

((2 − z1)p − z2p
′ + k) · (k − z1p − z2p

′) ((2 − z2)p
′ − z1p + k) · (k − z1p − z2p

′)

[k2 + z1(1 − z1)p2 + z2(1 − z2)p′2 − 2z1z2p · p′]4

16



= e3(1 − ξ)6

∫ 1

0

d3zδ(1 −
∑

i

zi)
dDk

(2π)D
z3((1 − 2z1)p + (1 − 2z2)p

′ + 2k)µ

(k2 + (2 − 2z1)p · k − 2z2k · p′)(k2 − 2z1p + (2 − 2z2)p
′) + finite

[k2 + z1(1 − z1)p2 + z2(1 − z2)p′2 − 2z1z2p · p′]4

= e3(1 − ξ)6

∫ 1

0

d3zδ(1 −
∑

i

zi)
dDk

(2π)D
z3

((1 − 2z1)p + (1 − 2z2)p
′)µ(k2)2 + 2kµk2((2 − 4z1)p + (2 − 4z2)p

′) · k + finite

[k2 + z1(1 − z1)p2 + z2(1 − z2)p′2 − 2z1z2p · p′]4

= e3(1 − ξ)6

∫ 1

0

d3zδ(1 −
∑

i

zi)
dDk

(2π)D
z3

((1 − 2z1)p + (1 − 2z2)p
′)µ + ((1 − 2z1)p + (1 − 2z2)p

′)µ

[k2]2
+ finite

= e3(1 − ξ)6

∫ 1

0

d3zδ(1 −
∑

i

zi)z3
i

(4π)2
Γ(ǫ)2[(1 − 2z1)p + (1 − 2z2)p

′]µ + finite

= e3(1 − ξ)
i

(4π)2
Γ(ǫ)2(p + p′)µ6

∫ 1

0

dz1

∫ 1−z1

0

dz3(1 − 2z1)z3

= e3(1 − ξ)
i

(4π)2
Γ(ǫ)(p + p′)µ6

∫ 1

0

dz1(1 − 2z1)(1 − z1)
2

= e3(1 − ξ)
i

(4π)2
Γ(ǫ)(p + p′)µ. (55)

The second diagram is

2ie2gµν(−ie)

∫

dDk

(2π)D
(2p + k)ρ−igνρ

k2

i

(p + k)2

= 2e3

∫

dDk

(2π)D

(2p + k)µ

k2(p + k)2

= 2e3

∫

dDk

(2π)D

∫ 1

0

dz
[(2 − z)p + k]µ

[k2 + z(1 − z)p2]2

= 2e3

∫ 1

0

dz(2 − z)pµ i

(4π)2
Γ(ǫ)[−z(1 − z)p2]−ǫ

= e33pµ i

(4π)2
Γ(ǫ) + finite. (56)
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The gauge-dependent piece is

2ie2gµν(−ie)

∫

dDk

(2π)D
(2p + k)ρ ikνkρ

k2

1 − ξ

k2

i

(p + k)2

= −2e3(1 − ξ)

∫

dDk

(2π)D

kµk · (2p + k)

[k2]2(p + k)2

= e3(1 − ξ)

∫

dDk

(2π)D
2

∫ 1

0

dz
(1 − z)kµk · (2p + k)

[k2 + 2zp · k + zp2]3

= e3(1 − ξ)

∫

dDk

(2π)D
2

∫ 1

0

dz
(1 − z)(k − zp)µ(k − zp) · ((2 − z)p + k)

[k2 + z(1 − z)p2]3

= e3(1 − ξ)

∫

dDk

(2π)D
2

∫ 1

0

dz
(1 − z)(k − zp)µ(k2 + 2(1 − z)k · p − z(2 − z)p2)

[k2 + z(1 − z)p2]3

= e3(1 − ξ)

∫

dDk

(2π)D
2

∫ 1

0

dz(1 − z)
−zpµk2 + kµ2(1 − z)k · p

[k2]3
+ finite

= e3(1 − ξ)

∫

dDk

(2π)D
2

∫ 1

0

dz(1 − z)
−zpµ + 1

2
(1 − z)pµ

[k2]2
+ finite

= e3(1 − ξ)2

∫ 1

0

dz(1 − z)
1

2
(1 − 3z)pµ i

(4π)2
Γ(ǫ) + finite

= 0 + finite. (57)

The third diagram gives the same contribution as the second one except
for the replacement p → p′. Overall, the vertex correction is

e3(p + p′)µ i

(4π)2
Γ(ǫ)[−1 + (1 − ξ) + 3] = ie(p + p′)µ (3 − ξ)e2

(4π)2
Γ(ǫ). (58)

Together with the tree-level piece,

Γ(3) = −ie(p + p′)µ

[

1 − (3 − ξ)e2

(4π)2
Γ(ǫ)

]

= −ie(p + p′)µZ−1
1 . (59)

Therefore,

Z1 = 1 +
(3 − ξ)e2

(4π)2
Γ(ǫ)M−2ǫ + finite. (60)

Note that this is exactly the same as the divergent piece in Z2. We could of
course also verify the finite pieces are the same, but it is beyond the scope of
this solution set. This way, we have verified that our calculation of βe using
the vacuum polarization diagrams alone is correct.
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Figure 6: The 1PI four-point function of scalars at O(λe2).

(e.4.3) O(e2λ) Vertex Correction

There are 1PI four-point diagrams Fig. 6 that renormalize λ at O(e2λ). The
first diagram is

−i2λ

3
(−ie)2

∫

dDk

(2π)D

i

(p + k)2

i

(p′ + k)2
(2p+k)µ(2p′+k)ν −i(gµν − (1 − ξ)kµkν

k2 )

k2
.

(61)
We extract only the ultraviolet-divergent pole piece, and for this purpose we
can set p = p′ = 0. To avoid infrared divergence, we can stick in a fictitious
small mass m2 to all propagators. Then,

− 2e2λ

3

∫

dDk

(2π)D

1

k2 − m2

1

k2 − m2
(1−(1−ξ)) = −2e2λ

3

i

(4π)2
Γ(ǫ)ξ+regular.

(62)
Note that the first four diagrams all give identical divergent piece, while the
last two have the opposite sign because of the direction of arrows. Therefore,
the overall contribution of six diagrams is

− i
2λ

3

2e2

(4π)2
Γ(ǫ)ξ + regular. (63)

This is added to the tree-level amplitude −i2λ
3

, while the scattering amplitude
comes with the wave function renormalization factors for all four external
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Figure 7: The 1PI four-point function of scalars at O(e4). For each diagram,
there is an additional diagram where the two outgoing lines are interchanged.

lines. Therefore the overall amplitude at O(e2λ) is given by

−i
2λ

3

[

1 +
2e2

(4π)2
Γ(ǫ)ξ

]

(
√

Z)4

= −i
2λ

3

[

1 +
2e2

(4π)2
Γ(ǫ)ξ

][

1 − e2

(4π)2
Γ(ǫ)(−3 + ξ)

]2

= −i
2λ

3

[

1 +
6e2

(4π)2
Γ(ǫ)

]

. (64)

Recovering M dependence , the renormalized λ depends on M as

M
dλ

dM
= M

d

dM
λ

[

1 +
6e2

(4π)2
Γ(ǫ)M−2ǫ

]

= −3e2λ

4π2
. (65)

This is indeed the O(e2λ) contribution to βλ in Eq. (52) we obtained from
the effective potential and Callan–Symanzik equation.

(e.4.4) O(e4) Vertex Correction

The O(e4) contribution to βλ comes from the diagrams in Fig. 7. Again we
take external momenta to zero to pick up the UV divergent piece. The IR
divergence can be regulated by a finite mass, which we don’t bother to write
any more. The first diagram is

(−ie)4

∫

dDk

(2π)D
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kµ i

k2
kν −i(gνρ − (1 − ξ)kνkρ

k2 )

k2
(−k)ρ i

k2
(−k)σ−i(gµσ − (1 − ξ)kµkσ

k2 )

k2

= e4ξ2

∫

dDk

(2π)D

1

k2k2
=

i

(4π)2
e4ξ2Γ(ǫ) + regular. (66)

The second diagram gives the same contribution to the divergent piece. The
third diagram is

(2ie2gµν)(−ie)2

∫

dDk

(2π)D

kρ i

k2
kσ−i(gνρ − (1 − ξ)kνkρ

k2 )

k2

−i(gµσ − (1 − ξ)kµkσ

k2 )

k2

= −2e4ξ2

∫

dDk

(2π)D

1

k2k2
= − i

(4π)2
2e4ξ2Γ(ǫ) + regular. (67)

The fourth diagram gives the same contribution to the divergent piece. Fi-
nally, the fifth diagram is

1

2
(2ie2gµν)(2ie

2gρσ)

∫

dDk

(2π)D

−i(gνρ − (1 − ξ)kνkρ

k2 )

k2

−i(gµσ − (1 − ξ)kµkσ

k2 )

k2
.

(68)
The overall factor of 1

2
is there because of the closed loop of identical bosons

(photon). The UV-divergent contribution is

2e4

∫

dDk

(2π)D

3 + ξ2

k2k2
=

i

(4π)2
2e4(3 + ξ2)Γ(ǫ) + regular. (69)

Because the two final-state scalars can be interchanged, each of the contri-
bution above is further doubled. Summing all five diagrams with a factor of
two, we find

2
i

(4π)2

[

2e4ξ2 − 4e4ξ2 + 2e4(3 + ξ2)
]

Γ(ǫ) =
i

(4π)2
12e4Γ(ǫ). (70)

Because this contribution adds to −i2λ/3, the O(e4) contribution to βλ is

M
dλ

dM
= −M

d

dM

3

2

1

(4π)2
12e4Γ(ǫ)M−2ǫ =

36

(4π)2
e4 =

54e4

24π2
, (71)

which agrees with what we obtained from the effective potential and the
Callan–Symanzik equation Eq. (52).
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Figure 8: The 1PI four-point function of scalars at O(λ2). The first s-chanel
diagram has two identical bosons running inside the loop, and hence has
a factor of 1/2. The second t-channel diagram comes with the crossed u-
channel diagram as well.

(e.4.5) O(λ2) vertex correction

Finally, we compute the easiest piece, O(λ2) contribution to βλ. The only
tricky issue is the combinatoric factors. The s-channel diagram has two
identical bosons running inside the loop and hence comes with a factor of 1/2,
while the t- and u-channel diagrams don’t. Therefore the overall divergent
piece is

(

−i
2λ

3

)2 ∫

dDk

(2π)D

i

k2

i

k2

(

1

2
+ 1 + 1

)

=
i

(4π)2

(

2λ

3

)2
5

2
Γ(ǫ). (72)

Since this is the correction to −i2λ
3

, the contribution to βλ at O(λ2) is

βλ = M
d

dM

1

(4π)2

−2λ2

3

5

2

1

ǫ
M−2ǫ =

λ2

(4π)2

10

3
=

5λ2

24π2
, (73)

which agrees with Eq. (52).

(e.5) Renormalization-group Flow

We rewrite the evolution equations for ǫ = e2/24π2 and l = λ/24π2, and
t = − ln M ,

d

dt
ǫ = −ǫ2 (74)

d

dt
l = −(5l2 − 18lǫ + 54ǫ2). (75)

The important point is that both equations have negative definite l.h.s. and
hence both of the couplings go to zero in the infrared limit. Note 5l2−18lǫ+
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54ǫ2 = 5(l − 9
5
ǫ)2 + 189

5
ǫ2 > 0. The problem is asking us to see the relative

size between the two.
First of all, the running of l is much faster than that of ǫ becase of the

larger l.h.s. Therefore, even if the initial condition has l > ǫ, l quickly
becomes smaller than ǫ. Therefore, without a loss of generality, we can
assume l < ǫ.

The first equation can be solved analytically and we find

1

ǫ(t)
− 1

ǫ(0)
= t (76)

and hence

ǫ(t) =
ǫ(0)

1 + ǫ(0)t
. (77)

Therefore,

e2(t) =
1

e−2(0) + 1
24π2 t

. (78)

Assuming l is negligible already compared to ǫ in the second equation, we
need to solve

d

dt
l = − 54ǫ(0)2

(1 + ǫ(0)t)2
. (79)

The solution is found easily as

l(t) − l(0) =
54ǫ(0)

1 + ǫ(0)t
− 54ǫ(0) = − 54ǫ(0)2t

1 + ǫ(0)t
. (80)

By assumption, for some t0, l(t0) < ǫ(t0) = 1/t0. Therefore, the terms in the
parentheses are negative. What it means is that l crosses zero at some t and
goes negative evententually.

This behavior justifies the assumption in part (c) that 0 < λ ≈ e4 ≪ e2

just before it crosses zero.
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