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15.3 Coulomb potential.

(a)

This is a straightforward generalization of Problem 11.1 we studied in HW
#4. We include the Wilson line in to the action in the path integral using
the source, and the result is given by the two powers of the source with the
propagator in between. Therefore, what we need is the propagator which we
compute in the Feynman gauge. In the coordinate space,

Dµν(x) = 〈0|TAµ(x)Aν(0)|0〉

=

∫
d4q

(2π)4

−igµνe−iq·x

q2 + iǫ

=

∫ ∞

0

dτ

∫
d4q

(2π)4
(−gµν)e−iq·xeiτ(q2+iǫ)

= −gµν

∫ ∞

0

dτ

∫
d4q

(2π)4
eiτ(q−x/2τ)2e−ix2/4τe−ǫτ

= −gµν

∫ ∞

0

dτ
1

(2π)4

(
π

−iτ

)1/2 (
π

+iτ

)3/2

e−ix2/4τe−ǫτ

= igµν

∫ ∞

0

dτ
1

(4π)2

1

τ 2
e−ix2/4τe−ǫτ

= igµν

∫ ∞

0

ds
1

(4π)2
e−isx2/4e−ǫ/s . (1)

Because the ǫ prescription is there just to specify how the pole is avoided, we
only need to retain the correct sign for ǫ and hence we can replace ǫ → ǫs2/4.
Then we find

Dµν(x) = igµν

∫ ∞

0

ds
1

(4π)2
e−is(x2−iǫ)/4

= igµν 1

(4π)2

−4i

x2 − iǫ

=
1

4π2

gµν

x2 − iǫ
(2)

1



The path integral with the Wilson line then reduces to

〈e−ie
H

P
Aµdxµ

〉 = exp

[
1

2
(−ie)2

∮

P

dxµ

∮

P

dyν〈0|TAµ(x)Aν(y)|0〉

]

= exp

[

−
1

2
e2

∮

P

dxµ

∮

P

dyν 1

4π2

gµν

(x − y)2 − iǫ

]

= exp

[

−e2

∮

P

dxµ

∮

P

dyν gµν

8π2[(x − y)2 − iǫ]

]

. (3)

This is what is desired, except for the fact that we’ve carefully worked out
how the pole is avoided in this integral.

(b)

The loop P consists of four portions, C1, C2, C3, C4 as show in Fig. 1.

C1

C4 C2

C3

(t, x) = (0, 0)

(t, x) = (T, 0)

(t, x) = (0, R)

(t, x) = (T, R)

Figure 1: The loop along which the Wilson loop is defined.

In the limit T ≫ R, clearly the most important contributions come from
the paths C2 and C4. We also avoid the self-energy contributions, namely
those from the same paths. We will take the T → ∞ limit while keeping R
finite. The exponent of the Wilson loop is then

−2e2

∫

C2

dxµ

∫

C4

dyν gµν

8π2[(x − y)2 − iǫ]

= −2e2

∫ T

0

dx0

∫ 0

T

dy0 g00

8π2[(x0 − y0)2 − R2 − iǫ]
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≈ −
e2

4π2
T

∫ −∞

∞

dy0 1

(y0)2 − R2 − iǫ

= +
e2

4π2
T

∫ ∞

−∞

dy0 1

(y0 − R − iǫ)(y0 + R + iǫ)

=
e2

4π2
T 2πi

1

2R

= i
e2

4πR
T . (4)

For the contour integral used in the second last step, see, e.g., Lecture note
on Contour Integrals. This is the desired result −iV (R)T with the Coulomb
potential V (R) = − e2

4πR
.

(c)

The only difference from the abelian case above is that the gauge field in the
Wilson loop is Aµ = Aa

µt
a
r , where tar is the generator in the representation

r. Because the propagator at the lowest order in g is 〈0|TAa
µ(x)Ab

ν(0)|0〉 =
Dµν(x)δab, the exponent is proportional to δabtart

b
r = C2(r). Therefore, we

simply replace e2 by g2C2(r), and hence the potential is V (R) = −g2C2(r)
4πR

.

15.5 Casimir operator computations

(a)

If you are not familiar with the tensor products and direct sum of vector
spaces, consult the 221A lecture note Tensor product and direct sum.

If the irreducible representation r decomposes as

r →

k∑

i=1

ji = j1 ⊕ j2 ⊕ · · · ⊕ jk (5)

under SU(2) ⊂ G, the generators of the SU(2) are given by

tar = taj1 ⊕ taj2 ⊕ · · · ⊕ tajk
. (6)

Here, a = 1, 2, 3 for the SU(2) generators, tar are the subset of generators
of G in the representation r, and taji

the SU(2) generators in the spin ji
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representation. Given this decomposition,

tr(tart
b
r) = tr(taj1t

b
j1

) + tr(taj2t
b
j2

) + · · · tr(tajk
tbjk

). (7)

For each traces in spin j representation, we know that the Casimir operator
is C2(j)

∑3
a=1 taj t

a
j = j(j + 1), while the representation is d(j) = 2j + 1

dimensional. This allows us to compute

tr(taj t
b
j) = C(j)δab. (8)

By summing over a = b, the matrix inside the trace is nothing but the
Casimir operator,

3∑

a=1

tr(taj t
b
j) = trj(j + 1) = j(j + 1)(2j + 1) (9)

Note that in the second step j(j +1) multiplies the unit matrix in the 2j +1
dimensional space. The r.h.s. gives

C(j)

3∑

a=1

δaa = 3C(j). (10)

Therefore, we find
3C(j) = j(j + 1)(2j + 1). (11)

This technique is nothing but Eq. (15.94) in the book, using d(SU(2)) = 3.
Going back to Eq. (7), we find

tr(tart
b
r) =

k∑

i=1

1

3
ji(ji + 1)(2ji + 1)δab, (12)

and hence we obtain

3C(r) =
∑

i

ji(ji + 1)(2ji + 1) (13)

as desired.
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(b)

The N -dimensional representation of SU(N) decomposes under SU(2) ⊂
SU(N) as

N → 2 ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

. (14)

Here, the notation “2” refers to 2-dimensional representation of SU(2), namely
j = 1/2. It is confusing, but people switch back and force between j and
2j + 1. Using the result from the previous part, we find

3C(N) =
1

2
(
1

2
+ 1)(2

1

2
+ 1) + 0 + · · ·+ 0

︸ ︷︷ ︸

N−2

=
3

2
. (15)

Therefore,

C(N) =
1

2
. (16)

This is the standard normalization of generators among physicists, tr(taN tbN ) =
1
2
δab.

The adjoint representation is found in the tensor product of N and its
conjugate representation N for SU(N) groups: N ⊗ N = adjoint ⊕ 1. You
can understand it this way. The N representation is a column vector v that
transforms as v → Uv. The N representation is another column vector w →
U∗w. The singlet (and hence invariant) is nothing but wTv → wT U †Uv =
wTv. The ajoint representation is nothing but wT tav, which transforms
to wT U †taUv = RabwT tbv, where Rabtb = U †taU is how the generators
transform, which is by definition what the adjoint representation is.

Under the decomposition to SU(2),

N ⊗ N = (2 ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

) ⊗ (2 ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

)

= (2 ⊗ 2) ⊕ (2 ⊗ (1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

)) ⊕ ((1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

) ⊗ 2)

⊕((1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

) ⊗ (1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

))

= (3 ⊕ 1) ⊕ 2 ⊕ · · · ⊕ 2
︸ ︷︷ ︸

2(N−2)

⊕ (1 ⊕ · · · ⊕ 1)
︸ ︷︷ ︸

(N−2)2

. (17)

A quick sanity check: the dimension of space originally is N2, and after the
decomposition, it is 3+1+2(N −2)×2+(N −2)2 = N2. Good. Then using
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the result of part (a),

3C(adj) = (2·1+1)1(1+1)+0+(2·
1

2
+1)

1

2
(
1

2
+1)(N−2)2+((N−2)2−1)0 = 3N.

(18)
Therefore, we find C(adj) = N for SU(N).

(c)

Now we look at the symmetric and anti-symmetric two-index tensor repre-
sentations. They appear in the tensor product of two fundamental represen-
tations N ⊗N = S ⊕A, where S = (N ⊗N)sym is a symmetric combination
of two N ’s and hence N(N + 1)/2 dimensional, while A = (N ⊗ N)asym is
an anti-symmetric combination which is N(N −1)/2 dimensional. Using the
same procedure as in part (b), we look at the symmetric combination first,

(N ⊗ N)sym = [(2 ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

) ⊗ (2 ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

)]sym

= (2 ⊗ 2)sym ⊕ [2 ⊗ (1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

)]sym ⊕ [1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

⊗ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

]sym

= 3 ⊕ (2 ⊕ · · · ⊕ 2
︸ ︷︷ ︸

N−2

) ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

(N−2)(N−1)/2

. (19)

Again using the result from part (a), we find

3C(S) = (2 · 1 + 1)1(1 + 1) + (2 ·
1

2
+ 1)

1

2
(
1

2
+ 1)(N − 2) = 3

N + 2

2
, (20)

and hence C(S) = N+2
2

. Then using Eq. (15.94) in the book, we find

C2(S) = C(S)
d(G)

d(S)
=

N + 2

2

N2 − 1

N(N + 1)/2
=

(N + 2)(N − 1)

N
. (21)

For the anti-symmetric two-index tensor,

(N ⊗ N)asym = [(2 ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

) ⊗ (2 ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

)]asym

= (2 ⊗ 2)asym ⊕ [2 ⊗ (1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

)]asym ⊕ [1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

⊗ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

N−2

]asym

= 1 ⊕ (2 ⊕ · · · ⊕ 2
︸ ︷︷ ︸

N−2

) ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

(N−2)(N−3)/2

. (22)
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Again using the result from part (a), we find

3C(A) = (2 ·
1

2
+ 1)

1

2
(
1

2
+ 1)(N − 2) = 3

N − 2

2
, (23)

and hence C(A) = N−2
2

. Then using Eq. (15.94) in the book, we find

C2(A) = C(A)
d(G)

d(S)
=

N − 2

2

N2 − 1

N(N − 1)/2
=

(N − 2)(N + 1)

N
. (24)

Eq. (15.100) tells us that

tr(taN⊗N)2 = (C2(N)+C2(N))d(N)d(N) = 2
N2 − 1

2N
NN = N(N +1)(N −1).

(25)
On the other hand, Eq. (15.101) tell us that

tr(taN⊗N)2 = C2(S)d(S) + C2(A)d(A)

=
(N + 2)(N − 1)

N

N(N + 1)

2
+

(N − 2)(N + 1)

N

N(N − 1)

2
= N(N + 1)(N − 1). (26)

Therefore, our results are consistent with the general formulae Eqs. (15.100)
and (15.101).
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