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We solve Problem 10.2 in Peskin–Schroeder. The Lagrangian density is

L =
1

2
(∂µφ)2 − 1

2
m2φ2 + ψ̄(i 6∂ −M)ψ − igψ̄γ5ψφ. (1)

The action is invariant under the parity P†ψ(~x, t)P = γ0ψ(−~x, t), P†φ(~x, t)P =
−φ(−~x, t). The parity transformation of the Lagrangian density is (note that
only fields are operators)

P†L(~x, t)P

=
1

2
(∂µP†φP)2 − 1

2
m2P†φ2P + P†ψ̄P(i 6∂ −M)P†ψP − igP†ψ̄Pγ5P†ψPP†φP

=
1

2
(−∂µφ(−~x, t))2 − 1

2
m2(−φ(−~x, t))2

+ψ̄(−~x, t)γ0(i 6∂ −M)γ0ψ(−~x, t)− igψ̄(−~x, t)γ0γ5γ0ψ(−~x, t)(−φ(−~t, t)). (2)

Now we use the properties of the gamma matrices {γµ, γν} = 2gµν and

{γµ, γ5} = 0. Note also ~∇φ(−~x, t) = −(~∇φ)(−~x, t) etc. The minus signs
appear twice in the first two terms and cancel. The third term is

ψ̄(−~x, t)γ0iγµ∂µγ
0ψ(−~x, t) = ψ̄(−~x, t)γ0i(γ0∂0 + γi∂i)γ

0ψ(−~x, t)
= ψ̄(−~x, t)i(γ0∂0 − γi∂i)ψ(−~x, t)
= ψ̄(−~x, t)[i(γ0∂0 + γi∂i)ψ](−~x, t). (3)

The very last term is

− igψ̄(−~x, t)γ0γ5γ0ψ(−~x, t)(−φ(−~t, t)) = igψ̄(−~x, t)(−γ5)ψ(−~x, t)φ(−~t, t)
= [−igψ̄γ5ψφ](−~x, t). (4)

Therefore, P†L(~x, t)P = L(−~x, t), and hence S =
∫
dtd~xL is invariant.

1 (a)

The number of loop integrals is given by the number of independent four-
momenta in a given diagram. Each propagator has its own four-momentum,

1



while each vertex enforces four-momentum conservation. However, there
always remains one overall four-momentum conservation of the diagram.
Hence,

L = Pf + Ps − VY + 1, (5)

where L is the number of loop integrals, Pf,s the number of fermion or scalar
propagators, respectively, and VY the number of Yukawa vertices. Since each
Yukawa vertex comes with two fermion lines and one scalar line,

VY =
1

2
(2Pf +Nf ) = 2Ps +Ns. (6)

Here, Nf,s are the number of external fermion or scalar lines, respectively.
Each propagator is counted twice as it connects two vertices, while an exter-
nal line connects to only one vertex. The superficial degrees of divergence
is

D = 4L− Pf − Ps. (7)

Eliminating VY , L, Pf,s from the above equations, we find

L = 4−Ns −
3

2
Nf . (8)

This is the same result as in QED, even though the Yukawa theory does not
benefit from the additional softening as in QED which is due to the gauge
invariance of the theory.

Therefore the superficially divergent diagrams are: two-point function of
scalar (D = 2), two-point function of fermion (D = 1), four-point function
of scalar (D = 0), and fermion-fermion-scalar three-point function (D = 0).
Note that the one-point function of scalar is superficially divergent (D = 3),
but it vanishes identically because of the parity invariance. The same is true
with the scalar three-point function (D = 1) which also vanishes identically.

Because the scalar four-point function is divergent, we actually need a
counter term to cancel it, namely we need a counter term of the form − δλ

4!
φ4.

In other words, without the interaction − λ
4!
φ4 in the bare Lagrangian, the

theory is not renormalizable.
All divergences are then taken care of by counter terms already present

in the bare Lagrangian

Lct =
1

2
δZφ(∂µφ)2 − 1

2
δmφ

2 + δZψ ψ̄i 6∂ψ − δM ψ̄ψ − iδgψ̄γ
5ψφ− 1

4!
δλφ

4. (9)
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To fix all six counter terms, we need to impose the same number of renor-
malization conditions.

Together with the new vertex, the counting changes as follows:

L = Pf + Ps − VY − Vλ + 1, (10)

2VY = 2Pf +Nf , (11)

VY + 4Vλ = 2Ps +Ns, (12)

D = 4L− Pf − Ps. (13)

Vλ is the number of φ4 vertices. Eliminating VY , Vλ, L, Pf,s, we find the same
result

D = 4−Ns −
3

2
Nf . (14)

2 (b)

The problem encourages to identify a clever choice of the external momenta to
simplify the calculations as the divergence structure does not depend on the
choice of renomalization conditions. We choose zero-momentum subtraction,
namely that corrections to the 1PI two-point functions vanish both for scalar
and fermion, their derivatives also vanish at the zero momentum, and also
the corrections to the amputated fermion-fermion-scalar three-point function
and scalar four-point function vanish at the zero momentum. This choice
considerably simply the computation of counter terms.

I have intentionally kept finite terms until the last step for each counter
term. For the pupose of solving the problem alone, which is asking only for
the pole terms, this is not necessary and one can simlify the calculations at
much earlier stages. However, for computation of actual amplitudes, it is
necessary to keep all terms that remain finite in the ε → 0 limit. After all,
finite terms are what give you physical amplitudes.

2.1 Scalar Two-Point Function

The one-loop diagram of the scalar two-point function is

− iM2(p2) = −g2
∫ ddk

(2π)d
Trγ5 i

6k+ 6p−M
γ5 i

6k −M
. (15)
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Here, the overall minus sign is there because of the closed fermion loop. As
usual, we first rewrite the fermion propagator as 1/(6k−M) = (6k+M)/(k2−
M2), and combine two denominators using the Feynman parameter

− iM2(p2) = g2
∫ ddk

(2π)d

∫ 1

0
dz

Trγ5(6k+ 6p+M)γ5(6k +M)

[z((k + p)2 −M2) + (1− z)(k2 −M2)]2
.

(16)
The denominator can be simplified as

z((k + p)2 −M2) + (1− z)(k2 −M2)

= k2 + 2zk · p+ zp2 −M2

= (k + zp)2 + z(1− z)p2 −M2. (17)

Shifting k to k − zp,

− iM2(p2) = g2
∫ ddk

(2π)d

∫ 1

0
dz

Trγ5(6k + (1− z) 6p+M)γ5(6k − z 6p+M)

[k2 + z(1− z)p2 −M2]2
.

(18)
Because the integration volume ddk and the denominator are even in k, the
odd powers in k in the numerator yield vanshing integrals. Therefore, we
need to only retain terms quadratic and zeroth order in k in the numerator.
Using the anti-commutation relation and γ5γ5 = 1,

Trγ5(6k + (1− z) 6p+M)γ5(6k − z 6p+M)

= Trγ5γ5(−6k − (1− z) 6p+M)(6k − z 6p+M)

= Tr[−(6k)2 + z(1− z)(6p)2 +M2] = 4[−k2 + z(1− z)p2 +M2]. (19)

Therefore,1

−iM2(p2) = g2
∫ ddk

(2π)d

∫ 1

0
dz

4[−k2 + z(1− z)p2 +M2]

[k2 + z(1− z)p2 −M2]2

= 4g2
∫ ddk

(2π)d

∫ 1

0
dz

[
− 1

k2 + z(1− z)p2 −M2
+

2z(1− z)p2

[k2 + z(1− z)p2 −M2]2

]

= 4g2
∫ 1

0
dz

[
−−iΓ(−1 + ε)

(4π)2−ε
[M2 − z(1− z)p2]1−ε

+ 2z(1− z)p2 iΓ(ε)

(4π)2−ε
[M2 − z(1− z)p2]−ε

]
. (20)

1Note that my notation is slightly different from Peskin-Schroeder: I take d = 4 − 2ε
instead of their d = 4− ε which keeps the ε dependence simpler.
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Together with the counter terms and the tree-level piece, the two-point
function is

iΓ(p2) = i(p2 −m2)− iM2(p2) + i(δZφp
2 − δm). (21)

With the zero-momentum subtraction scheme, we require Γ(0) = −m2,
dΓ/dp2(0) = 1. Therefore the renormalization conditions are

M2(0) + δm = 0, (22)

d2

dp2
M2

∣∣∣∣∣
p2=0

− δZφ = 0. (23)

The mass counter term is therefore

δm = 4g2
∫ 1

0
dz

Γ(−1 + ε)

(4π)2−ε
[M2]1−ε = 4g2 Γ(−1 + ε)

(4π)2−ε
(M2)1−ε

= −4g2 1

(4π)2

1

ε
M2 + finite. (24)

Here I used the Laurent expansion,

Γ(−1+ ε) =
1

−1 + ε
Γ(ε) = −(1+ ε+O(ε)2)

(
1

ε
− γ +O(ε)

)
= −1

ε
+regular.

(25)
The wavefunction renormalization is somewhat more involved, but is still

straightforward

δZ =
d2

dp2
M2(p2)

∣∣∣∣∣
p2=0

= 4g2
∫ 1

0
dz

[
−Γ(−1 + ε)

(4π)2−ε
(1− ε)(−z(1− z))[M2]−ε

− 2z(1− z)
Γ(ε)

(4π)2−ε
[M2]−ε

]

= −4g2
∫ 1

0
dz3z(1− z)

Γ(ε)

(4π)2−ε
(M2)−ε

= −2g2 Γ(ε)

(4π)2−ε
(M2)−ε = −2g2 1

(4π)2

1

ε
+ finite. (26)

We used the identity (−1 + ε)Γ(−1 + ε) = Γ(ε) in the fourth line. Note that
the pole at ε = 1 indicates a quadratic divergence, while that at ε = 0 a
logarithmic divergence.
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Even though this is not required in the problem, it is instructive to see that the sum
of the one-loop diagram and the counter terms is now manifestly finite for all momenta.
What the counter terms do is to subtract the integrand at p2 = 0 and the piece at first
order in p2. Looking at the first term in the integral Eq. (20),

−−iΓ(−1 + ε)
(4π)2−ε

{
[M2 − z(1− z)p2]1−ε − [M2]1−ε − (1− ε)z(1− z)p2[M2]−ε

}
=

iΓ(−1 + ε)
(4π)2−ε

{
[M2 − z(1− z)p2](1− ε ln[M2 − z(1− z)p2])

−M2(1− ε lnM2) + (1− ε)z(1− z)p2(1− ε lnM2) + O(ε)2
}

=
iΓ(−1 + ε)

(4π)2−ε

{
−ε[M2 − z(1− z)p2] ln[M2 − z(1− z)p2])

+εM2 lnM2 − εz(1− z)p2 − εz(1− z)p2 lnM2 + O(ε)2
}

=
−iΓ(−1 + ε)

(4π)2−ε
ε

{
[M2 − z(1− z)p2] ln

M2 − z(1− z)p2

M2
+ z(1− z)p2 + O(ε)

}
=

i

(4π)2

{
[M2 − z(1− z)p2] ln

M2 − z(1− z)p2

M2
+ z(1− z)p2

}
+ O(ε) (27)

which is manifestly finite. Also the second term is

2z(1− z)p2 iΓ(ε)
(4π)2−ε

{
[M2 − z(1− z)p2]−ε − [M2]−ε

}
= 2z(1− z)p2 iΓ(ε)

(4π)2−ε

{
−ε ln

M2 − z(1− z)p2

M2
+ O(ε)2

}
= −2z(1− z)p2 i

(4π)2
ln

M2 − z(1− z)p2

M2
+ O(ε)

(28)

Therefore, the full two-point function

iΓ(p2) = i(p2 −m2)− iM2(p2) + i(δZφp
2 − δm)

= i(p2 −m2)

+4g2 i

(4π)2

∫ 1

0

dz

[
[M2 − 3z(1− z)p2] ln

M2 − z(1− z)p2

M2
+ z(1− z)p2

]
(29)

is manifestly finite. Note, however, that the location of the pole Γ(p2) = 0 is no longer
p2 = m2 but is shifted, and residue is not unity either. Therefore, the physical mass is
corrected from m2. This is because we employed the zero-momentum subtraction scheme
instead of the on-shell scheme. The former is easier for the purpose of seeing that all
physical amplitudes are finite, while the latter admits physical interpretation of results
more readily.
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The location of the pole can be identified by writing m2
pole = m2 + δm2 and require

Γ(m2 + δm2) = 0. Note that δm2 is O(g2), and hence one does not keep it inside the
integral which is already O(g2). Therefore,

0 = iΓ(p2 = m2
pole)

= iδm2 + 4g2 i

(4π)2

∫ 1

0

dz

[
[M2 − 3z(1− z)m2] ln

M2 − z(1− z)m2

M2
+ z(1− z)m2

]
(30)

The residue at the pole is Z = (dΓ(m2
pole)/dp2)−1 6= 1 and therefore any N -point function

needs to be multiplied by Z−N/2 to work out the S-matrix elements according to the LSZ
reduction formula. See Ch 7.2 in Peskin–Schroeder. Explicitly,

Z−1 =
dΓ(p2)

dp2

∣∣∣∣
p2=m2

pole

= 1 +
4g2

(4π)2

∫ 1

0

dzz(1− z)

[
−3 ln

M2 − z(1− z)m2
pole

M2
−

M2 − 3z(1− z)m2
pole

M2 − z(1− z)m2
pole

+ 1

]
.

(31)

2.2 Fermion Two-Point Function

The one-loop diagram for the fermion two-point function is

−iΣ(6p) = g2
∫ ddk

(2π)d

i

k2 −m2
γ5 i

6k+ 6p−M
γ5

= −g2
∫ ddk

(2π)d

1

k2 −m2

−6k−6p+M

(k + p)2 −M2

= −g2
∫ ddk

(2π)d

∫ 1

0
dz

−6k−6p+M

[k2 + 2k · p+ zp2 − (1− z)m2 − zM2]2

= −g2
∫ ddk

(2π)d

∫ 1

0
dz

−(1− z) 6p+M

[k2 + z(1− z)p2 − (1− z)m2 − zM2]2

= −g2
∫ 1

0
dz[−(1− z) 6p+M ]

iΓ(ε)

(4π)2−ε
[(1− z)m2 + zM2 − z(1− z)p2]−ε

(32)

The full 1PI two-point function at the one-loop contains the tree-level piece
as well as counter terms,

iΓ(6p) = i(6p−M)− iΣ(6p) + i(δZψ 6p− δM). (33)
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We require that the corrections cancel for zero-momentum which fixes the
counter terms,

Σ(0) + δM = 0, (34)

d

d 6p
Σ(6p)

∣∣∣∣∣
6p=0

− δZψ = 0. (35)

The mass counter term is

δM = −Σ(0)

= −g2
∫ 1

0
dzM

Γ(ε)

(4π)2−ε
[(1− z)m2 + zM2]−ε

= −g2M
Γ(ε)

(4π)2−ε

1

1− ε

[
1

M2 −m2
[z(M2 −m2) +m2]1−ε

]1

0

= −g2M
Γ(ε)

(4π)2−ε

1

1− ε

(M2)1−ε − (m2)1−ε

M2 −m2

= −g2M
1

(4π)2

1

ε
+ finite. (36)

The wave function counter term is

δZψ = g2 Γ(ε)

(4π)2−ε
×

d

d 6p

[∫ 1

0
dz[−(1− z) 6p+M ][(1− z)m2 + zM2 − z(1− z)p2]−ε

]∣∣∣∣∣
6p=0

(37)

In general, the derivative with respect to 6p hits p2 = (6p)2. However, with the
zero-momentum subtraction, we set 6p = 0 in the end and hence d(p2)/d 6p =
2 6p does not contribute. Therefore,

δZψ = g2 Γ(ε)

(4π)2−ε

∫ 1

0
dz[−(1− z)][(1− z)m2 + zM2]−ε (38)

The integral is easily done this way,∫ 1

0
dz(1− z)[(1− z)m2 + zM2]−ε

=
1

1− ε

∂

∂m2

∫ 1

0
dz[(1− z)m2 + zM2]1−ε

8



=
1

1− ε

∂

∂m2

[
1

2− ε

1

M2 −m2
[z(M2 −m2) +m2]2−ε

]1

0

=
1

1− ε

∂

∂m2

1

2− ε

(M2)2−ε − (m2)2−ε

M2 −m2

=
1

(1− ε)(2− ε)

−(2− ε)(m2)1−ε(M2 −m2)− ((M2)2−ε − (m2)2−ε)(−1)

(M2 −m2)2

=
1

(1− ε)(2− ε)

−(2− ε)(m2)1−ε(M2 −m2)− ((M2)2−ε − (m2)2−ε)(−1)

(M2 −m2)2

=
1

(1− ε)(2− ε)

−(2− ε)(m2)1−εM2 + (1− ε)(m2)2−ε + (M2)2−ε

(M2 −m2)2

(39)

Therefore,

δZψ = −g2 Γ(ε)

(4π)2−ε

−(2− ε)(m2)1−εM2 + (1− ε)(m2)2−ε + (M2)2−ε

(1− ε)(2− ε)(M2 −m2)2

= −g2 1

(4π)2

1

ε

1

2
+ finite. (40)

Just like the scalar two-point function, we can explicitly verify that the two-point
function is made manifestly finite with the counter terms. We subtracted the zeroth order
and first order pieces in 6p from Eq. (32), and hence

iΓ(6p) = i(6p−M)− iΣ(6p) + iδZψ6p− iδM

= i(6p−M)− g2 iΓ(ε)
(4π)2−ε

∫ 1

0

dz[−(1− z) 6p + M ]{
(1− z)m2 + zM2 − z(1− z)p2]−ε − [(1− z)m2 + zM2]−ε

}
= i(6p−M) + g2 i

(4π)2

∫ 1

0

dz[−(1− z) 6p + M ] ln
(1− z)m2 + zM2 − z(1− z)p2

(1− z)m2 + zM2

(41)

This expression is manifestly finite, while the location of the pole is not at 6p= m nor is
the residue unity. The same caution about S-matrix elements applies as in the scalar case.

2.3 Fermion-Fermion-Scalar Three-Point Function

The one-loop diagram for the vertex correction is

− iV (pf , pi) = g3
∫ ddk

(2π)d

i

k2 −m2
γ5 i

6pf+ 6k −M
γ5 i

6pi+ 6k −M
γ5. (42)
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It is logarithmically divergent, which needs be cancelled by the counter term.
We require that the full amputated three-point function

− iΓ(pf , pi) = gγ5 − iV (pf , pi) + δgγ
5 (43)

is given by gγ5 at zero momentum,

− iΓ(0, 0) = gγ5 − iV (0, 0) + δgγ
5 = gγ5, (44)

namely δgγ
5 − iV (0, 0) = 0.

We can now compute the counter term.

δgγ
5 = iV (0, 0)

= −g3
∫ ddk

(2π)d

i

k2 −m2
γ5 i

6k −M
γ5 i

6k −M
γ5

= ig3
∫ ddk

(2π)d

1

k2 −m2

γ5(6k +M)γ5(6k +M)γ5

[k2 −M2]2

= ig3
∫ ddk

(2π)d

1

k2 −m2

γ5(−k2 +M2)

[k2 −M2]2

= −ig3γ5
∫ ddk

(2π)d

1

(k2 −m2)(k2 −M2)

= −ig3γ5
∫ ddk

(2π)d

∫ 1

0
dz

1

[k2 − zm2 − (1− z)M2]2

= −ig3γ5
∫ 1

0
dz

iΓ(ε)

(4π)2−ε
[zm2 + (1− z)M2]−ε

= −ig3γ5 iΓ(ε)

(4π)2−ε

[
1

1− ε

1

m2 −M2
[z(m2 −M2) +M2]1−ε

]1

0

= g3γ5 Γ(ε)

(4π)2−ε

1

1− ε

(m2)1−ε − (M2)1−ε

m2 −M2
. (45)

Therefore,

δg = g3 Γ(ε)

(4π)2−ε

1

1− ε

(m2)1−ε − (M2)1−ε

m2 −M2
= g3 1

(4π)2

1

ε
+ finite. (46)

2.4 Scalar Four-Point Function

The one-loop box diagram for the scalar four-point function is quite compli-
cated. With four scalars with four-momenta p1, p2, p3, and p4, all defined
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to be coming into the diagram and subject to the overall four-momentum
conservation pµ

1 +pµ
2 +pµ

3 +pµ
4 = 0, there are 4! ways of ordering them. How-

ever, the cyclic permutation does not give rise to new diagrams and hence
4!/4=3!=6 diagrams are independent. One can verify this also from the first
principle by using Wick’s theorem to contract scalars and fermions. All six
digrams are lograrithmically divergent.

One of the diagrams is

−g4
∫ ddk

(2π)d
Trγ5 i

6k −M
γ5 i

6k+ 6p1 −M
γ5 i

6k+ 6p1+ 6p2 −M
γ5 i

6k−6p4 −M
. (47)

The other diagrams are obtained by permuting the four-momenta.
However, if all external momenta vanish, all six diagrams become the

same.

−g4
∫ ddk

(2π)d
Trγ5 i

6k −M
γ5 i

6k −M
γ5 i

6k −M
γ5 i

6k −M
× 6

= −6g4
∫ ddk

(2π)d

Trγ5(6k +M)γ5(6k +M)γ5(6k +M)γ5(6k +M)

[k2 −M2]4
. (48)

The numerator simplifies to

Trγ5(6k +M)γ5(6k +M)γ5(6k +M)γ5(6k +M)

= Trγ5γ5(−6k +M)(6k +M)γ5γ5(−6k +M)(6k +M)

= 4[k2 −M2]2. (49)

Therefore, the sum of six diagrams with zero external momenta is

= −24g4
∫ ddk

(2π)d

1

[k2 −M2]2
= −24g4 iΓ(ε)

(4π)2−ε
(M2)−ε. (50)

To cancel this by the counter term −iδλ, we need

δλ = −24g4 Γ(ε)

(4π)2−ε
(M2)−ε = −24g4 1

(4π)2

1

ε
+ finite. (51)
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