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1 Introduction

Solid state systems are based on crystals that have discretized positions for
electronic degrees of freedom. In other words, the atomic distance provides
a short-distance cutoff to the system below which you have to change the
description of the system to that of nuclei and electrons instead of atoms.
The intrinsic inability of the atomic description below the Bohr radius is not
a problem, as long as we are aware of its limitation. Any physical theories
have their limited applicability we should be aware of and we can live with.

Despite the intrinsic distance scale in the problem, the atomic scale, many
solid state systems exhibit interesting phenomena at distances much larger
than atoms. This is particularly true when the system is close to a second-
order phase transition. Imagine a ferromagnet described by the Heisenberg
model,

H = − J
~2

∑
〈i,j〉

~si · ~sj. (1)

Here and below, the sum over 〈i, j〉 refers to nearest neighbors on the lattice.
The parameter J has the dimension of energy, describing the strength of the
spin-spin interaction. The origin of the interaction is actually the Coulomb
replusion between electrons which prefers the orbital wave function to be anti-
symmetric than symmetric to separate their positions, requiring symmetric
spin wave function to be consistent with the overall anti-symmetry of fermion
wave functions. Therefore J is expected to be of the order of electronic
energies, i.e., electronvolt.

At a high temperature, all spins are random due to their thermal fluctu-
ations. As one lowers the temperature, one reaches the critical temperature
at which all spins start to line up. How do spins know which direction to
point? Somehow each spin becomes very susceptible to all other spins over
a macroscopic (say, many microns) distance so that it knows which way to
point?

It is like spins become very “fashion-conscious” close to the critical tem-
perature. Imagine being in a densely-packed dance hall where you can only
see people around you. But you are very keen to know what other groups
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in the same hall are doing. When they start a new fashion or trend, you’d
like to join the trend right away. Due to some reason spins manage to do
so. When a group of spins start to line up, other spins far away can tell and
start lining up with them, too.

This long-range correlation used to be a big mystery. What we now
know is that the correlation length diverges at the critical temperature of a
second-order phase transition so that each spin “learns” what the others are
doing.

Mathematically, the long-range correlation is expressed in terms of the
correlation function

〈si(0)sj(~x)〉 ∝ δije−r/ξ. (2)

For a finite ξ, the correlation function damps exponentially at large distances
and a spin cannot tell what a far-away spin is doing. But as the temperature
approaches the critical point T → Tc, the correlation length diverges ξ →∞.
This is the phenomenon we would like to understand using the quantum field
theory techniques.

In order to use techniques in continuum field theory to study systems on
a lattice, we first need to derive the continuum Lagrangian from the given
lattice system.

2 Heisenberg Model

The Heisenberg model of magets (ferromagnets) is given by the Hamiltonian

H = − J
~2

∑
〈i,j〉

~si · ~sj. (3)

The sum over 〈i, j〉 refers to the nearest neighbor sites on the lattice. What
we would like to do now is to rewrite this Hamiltonian in terms of continuum
field theory.

The first step is to use the path integral formulation of spins, as described
in a separate lecture notes. Each spin is described by a vector ~s = j~~n =
j~(sin θ cosφ, sin θ sinφ, cos θ) with the action

S = j~
∫

cos θφ̇dt. (4)

2

http://hitoshi.berkeley.edu/221A/spin.pdf


One can also use the complex coordinate z(t) which is related to the unit
vector ~n by

nz =
1− z̄z
1 + z̄z

, nx + iny =
2z

1 + z̄z
. (5)

It is easy to verify that ~n2 = 1 using this definition. This complex coordinate
is the stereographic projection of the point on the sphere from the north pole
down to the plane tangent to the sphere at the south pole.

To put the Heisenberg model on a path integral, the first step is to use
this Lagrangian for each spin. Then the action is

L = j~
∑
i

cos θiφ̇idt+
J

~2

∑
〈i,j〉

(j~)2~ni · ~nj. (6)

Now we use the following trick:

~ni · ~nj =
1

2
[~n2
i + ~n2

j − (~ni − ~nj)2] = 1− 1

2
(~ni − ~nj)2. (7)

We omit the constant term from the Lagrangian, and we now have

L = j~
∑
i

cos θiφ̇idt−
1

2
Jj2

∑
〈i,j〉

(~ni − ~nj)2. (8)

Assuming that the neighboring spins are more-or-less pointing the same di-
rection due to this interaction, we can regard the unit vectors as a continuous
field ~n(~x, t), and the difference between neighboring sites is approximated as

~ni − ~nj = (~a · ~∇)~n+O(a)2, (9)

where ~a is one of the lattice vectors. Let us assume a cubic lattice of lattice
constant a, so that it is a∇x,y,z~n. The sum over nearest neighbors then
becomes,∑

〈i,j〉

(~ni − ~nj)2 =

∫
d~x

aD
a2
[
(∇x~n)2 + (∇y~n)2 + (∇z~n)2 +O(a)2

]
=

1

aD−2

∫
d~x(~∇ni)2. (10)

Here, the repeated index i is summed over the three components of the spin
i = 1, 2, 3. Finally, the sum over the sites for the first term in the Lagrangian
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is also approximated by the continuum field and we finally find

L =

∫
d~x

[
1

aD
j~ cos θφ̇− 1

2

1

aD−2
Jj2(~∇ni)2

]
. (11)

In order to derive the equation of motion, we must vary ni subject to the
constraint nini = 1. This is most easily done using the complex coordinate
z. Using the definition Eq. (5), it is easy to see that

L =

∫
d~x

[
1

aD
j~

2z̄iż

1 + z̄z
− 1

2

1

aD−2
Jj2 4~∇z̄ · ~∇z

(1 + z̄z)2

]
. (12)

The Euler–Lagrange equation of motion is

1

aD
j~

2iż

(1 + z̄z)2
+

1

2

1

aD−2
Jj2

[
4~∇2z

(1 + z̄z)2
+

4~∇z̄ · ~∇z
(1 + z̄z)3

z

]
= 0. (13)

Clearly, constant z and z̄ is a static solution. It is nothing but the state
where all the spins are lined up along the same direction.

The excitation above the ground state can be studied by “linearing” the
equation, namely that we expand the equation of motion up to the first
order in the fluctuation. Or equivalently, we expand the Lagrangian up to
the quadratic order in fluctuations. The simplest choice of the ground state
for us with this coordinate is obviously z = z̄ = 0. Then z and z̄ are
fluctuations. The Lagrangian expanded up to the quadratic order is

L =

∫
d~x

[
1

aD
j~2z̄iż − 1

2

1

aD−2
Jj24~∇z̄ · ~∇z +O(z, z̄)4

]
. (14)

The equation of motion then is

1

aD
j~2iż +

1

2

1

aD−2
Jj24~∇2z = 0. (15)

Going to the Fourier space z = zne
−i(Et−~p·~x)/~, we find

1

aD
j~2

E

~
− 1

2

1

aD−2
Jj24

~p2

~2
z = 0, (16)

and hence

E(~p) = Jj
~p2a2

~2
. (17)
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This agrees completely with the excitation spectrum worked out using the
operators in Lecutre notes on Spontaneous Symmetry Breaking,

E(k) = J(1− cos ka) (18)

by identifying k = |~p|/~, j = 1/2, and expanding the expression up to the
second order in k (because we kept only second order in derivatives).

Now we move to the finite temperature. The partition function is ob-
tained by the path integral for the imaginary time t = −iτ with the periodic
boundary condition z(τ + ~β) = z(τ) etc for the bosonic fields. (For fermion
fields, anti-periodic boundary condition is used instead. See Lecture notes
on path integral.) The imaginary-time action is

S =

∮ ~β

0

dτ

∫
d~x

[
1

aD
j~

2z̄iż

1 + z̄z
+

1

2

1

aD−2
Jj2 4~∇z̄ · ~∇z

(1 + z̄z)2

]
. (19)

We can expand the fields in the Fourier modes,

z(~x, τ) =
∞∑

n=−∞

zn(~x)e−inτ/~β. (20)

Then the linearized action is

S = ~β
∑
n

∫
d~x

[
1

aD
j~2z̄n

n

~β
zn +

1

2

1

aD−2
Jj24~∇z̄n · ~∇zn +O(z, z̄)4

]
.

(21)
Therefore, the correlation function of zn is damped exponentially as e−r/ξn

with the correlation length

ξ2
n = j

βJ

n
a2. (22)

Remember J is of the order of electronvolt, the Curie (phase transition) tem-
perature typically Tc ∼ 1000K. Therefore βJ ∼ 10, and hence the correlation
length is not much larger than the lattice constant. They do not give rise to
long-range correlation we expect at the second-order phase transition. We
can safely integrate them out from the theory, keeping only the zero mode z0.
The path integral over the non-zero modes may change the action, but the
SO(3) symmetry of the system guarantees that the only corrections one may
obtain are of the same form as the terms we already have (up to higher order
derivatives which we can ignore to study long-range correlations), namely
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just the renormalization of the coefficients. In other words, at Tc and long
distances, the periodic imaginary time direction is so much flatted out that
we can ignore it, and retain only the spatial dimensions.

Here, we simply set zn = 0 and keep the zero mode,

S = ~β
∫
d~x

[
1

2

1

aD−2
Jj2 4~∇z̄ · ~∇z

(1 + z̄z)2

]
= ~β

∫
d~x

[
1

2

1

aD−2
Jj2(~∇ni)2

]
. (23)

Writing the sum over the index i explicitly, the partition function is

Z =

∫ 3∏
i=1

Dni(~x)e
− 1

2g2
0

R
d~x

P3
i (~∇ni)2

δ(
3∑
i=1

nini − 1), (24)

where
1

g2
0

= βJ
j2

aD−2
. (25)

g0 has length dimension (D−2)/2. In particular, it is dimensionless in D = 2.
It is useful to remember that the bare coupling squared g2

0 is proportional to
the temperature.

There is interest in other values of N as well. N = 1 corresponds to
the Ising model. N = 2 is the so-called XY model, which describes the
long-range behavior of superfluid.

3 Non-Linear Sigma Model

Unfortunately we cannot solve the field theory exactly for most dimensional-
ities and coupling g0. We will discuss later that perturbation theory is good
around D = 2 or 4 using different forms of the Lagrangian. On the other
hand we would like to understand general issues of spontaneous symmetry
breaking for all dimensionalities. For this purpose, it is useful to study the
model

Z =

∫ N∏
i=1

Dni(~x)e
− 1

2g2
0

R
d~x(~∇ni)2

δ(
N∑
i=1

nini − 1), (26)

for general N . It turns out that this model is exactly solvable for the limit
N →∞. This model is called SO(N)/SO(N − 1) Non-Linear Sigma Model.

The Heisenberg model corresponds to N = 3, where ni sweeps the surface
of two-sphere S2. For N = 1, n = ±1, and the model describes the Ising
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model. For N = 2, ni sweeps a circle S1, and the model is called XY model,
which appears in the study of superfluids and hexatic liquid crystals. N > 3 is
not used to describe any realistic condensed matter systems as far as I know.
Nonetheless, it is useful to keep N as a free parameter, and in particular
we will consider the limit N → ∞ which gives us the exact solution to the
system. ni sweeps the surface of N − 1-dimensional sphere SN−1.

As explained in Peskin–Schroeder, we rewrite the Lagrangian as

Z =

∫ N∏
i=1

Dni(~x)Dα(~x)e
− 1

2g2
0

R
d~x[(~∇ni)2+iα(nini−1)]

. (27)

Here, the delta function that enforces nini = 1 is rewritten in terms of an
integral over a (Lagrange-multiplier) field α(~x). The coefficient 1/2g2

0 in front
of α is there for the later convenience. Because the overall normalization of
the partition function drops out from any physical correlation functions, we
are free to use this coefficient.

The minimum energy field configuration is given by ni(~x) = ni (constant),
again consistent with all spins aligned, namely we expect an ordered state.
However, the thermal fluctuations may destroy the order. This is one of the
principal questions we would like to study close to the critical point.

If the spins are lined up and hence there is a long-range order, we expect
ni 6= 0 and hence the correlation function approaches a constant at large
distances,

〈ni(0)nj(~x)〉 → δij|〈ni〉|2 6= 0 (|~x| → ∞). (28)

At the critical temperature, the order is just about to set in and hence the
correlation function approaches zero. However, because there is a long-range
correlation of “fashion-consciousness,” it does not damp exponentially. It is
supposed to follow a power-law damping,

〈ni(0)nj(~x)〉 ' |~x|−(D−2+η) (|~x| → ∞), (29)

This parameter η is one of the quantities called “critical exponents,” de-
scribing the characteristic behavior of physical quantities close to the critical
point.

If the system is disordered, the correlation function damps exponentially
to zero,

〈ni(0)nj(~x)〉 ' δije−r/ξ (|~x| → ∞). (30)
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The parameter ξ is the correlation length. How quickly it diverges close to
the critical temperature

ξ ∼
(
T − Tc
Tc

)−ν
(31)

defines another critical exponent ν.
If one approaches the critical temperature from below, the magnetization

goes to zero as

M ∼
(
Tc − T
Tc

)β
. (32)

The critical exponent β is also of interest.

3.1 Large N Exact Solutions

It is instructive to study the model first in the large N limit where an exact
solution can be obtained. We will come back to the perturbation theory to
see how it works for general N . This is the same discussion as in Section
13.3 of Peskin–Schroeder, but it skips some of the calculations and I present
here more details.

For spatial dimensions larger than two, the coupling g0 has length dimen-
sion (D− 2)/2 and hence the theory is non-renormalizable. Since the theory
has a natural cutoff at the atomic distance, this is not a problem.

The technique we use is to integrate over ni and study the effective action
for α. To do so, we have to make two assumptions. One is that α acquires a
finite expectation value, so that ni is massive and can be integrated out. Then
we minimize the result with respect to α. The other is that α is spatially
constant. Both of them can be justified a posteori , by calculating the effective
action and show that α is non-vanishing at the minimum of the potential,
and the energy increases for spatially-varying configuration. If this turns
out to be the case, ni is massive and hence its correlation function damps
exponentially at large distances, signaling lack of long-range order. On the
other hand, if α does not have an expectation value, it was not correct to
integrate out ni without assigning a vacuum expectation value. Then ni stays
massless and there is a long-range order. We will come back to this question
shortly.

Under the assumption that there is a constant expectation value for α,
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we compute the effective potential,

Z =

∫
Dα(~x)e−

R
dDxVeff (α),

e−
R
dDxVeff (α) =

∫ N∏
i=1

Dni(~x)e
− 1

2g2
0

R
dDx[(~∇ni)2+iα(nini−1)]

= [det(−~∇2 + iα)]−N/2e

R
dDx 1

2g2
0
iα
. (33)

Therefore, we find∫
dDxVeff (α) =

N

2

[
Tr ln(−~∇2 + iα)−

∫
dDx

1

Ng2
0

iα

]
. (34)

We consider the limit where N →∞, while keeping Ng2
0 fixed. The latter is

called ’t Hooft coupling. We will see later that fixing this combination makes
sense from the point of view of the perturbation theory. Then, the exponent
changes so rapidly as a function of α that the steepest descent method can
be used, namely that the integral is dominated by the stationary point of the
effective potential. It is in this limit that we have the exact result: all we
need to do is to solve dVeff (α)/dα = 0.

Now we calculate the determinant.∫
dDxVeff (α) =

N

2

[
Tr ln(−~∇2 + iα)−

∫
dDx

1

Ng2
0

iα

]
=

N

2

[∫
dDxdDp

(2π)D
ln(~p2 + iα)−

∫
dDx

1

Ng2
0

iα

]
, (35)

and hence the superficial degree of divergence is D. However, we only need to
solve the stationary condition, and hence we take the derivative with respect
to α, ∫

dDp

(2π)D
1

~p2 + iα
− 1

Ng2
0

= 0. (36)

In order to work it out with a physical cutoff p ∼ 1/a, where a is the lattice
constant, we employ a Gaussian cutoff to smoothly remove the contributions
from modes with high momenta. Because at the minimum we will find iα =
m2 > 0, we use this notation anticipating the result. Therefore, we look for
the solution to the equation∫

dDp

(2π)D
e−~p

2/Λ2

~p2 +m2
=

1

Ng2
0

. (37)
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This equation is sometimes called gap equation because it determines the
“gap” which is the non-zero energy required to create the excitation ni.

The momentum integral can be evaluated as∫
dDp

(2π)D
e−~p

2/Λ2

~p2 +m2
=

∫
dDp

(2π)D

∫ ∞
1/Λ2

dte−t(~p
2+m2)em

2/Λ2

= em
2/Λ2 1

(2π)D

∫ ∞
1/Λ2

dt
(π
t

)D/2
e−tm

2

= em
2/Λ2

(Λ2)(D−2)/2 1

(4π)D/2

∫ ∞
1

dt t−D/2e−tm
2/Λ2

= em
2/Λ2 ΛD−2

(4π)D/2
ED/2(m2/Λ2). (38)

Here, En(z) is the exponential integral function

En(z) =

∫ ∞
1

e−zt

tn
dt. (39)

Note that the prefactor em
2/Λ2

is always smaller than the factor in the inte-
grand e−tm

2/Λ2
because t > 1, and hence the integral is bounded from above,∫
dDp

(2π)D
e−~p

2/Λ2

~p2 +m2
=

ΛD−2

(4π)D/2

∫ ∞
1

dt t−D/2e−tm
2/Λ2

em
2/Λ2

<
ΛD−2

(4π)D/2

∫ ∞
1

dt t−D/2 =
ΛD−2

(4π)D/2
1

−1 +D/2
. (40)

Note that the last integral does not converge for D ≤ 2 and this upper bound
applies only for D > 2. The existence of the upper bound is very important
in the following discussions of the critical point. Namely that the equation
Eq. (37) only if the coupling is larger than the critical coupling

Ng2
0 > Ng2

c =
(4π)D/2

ΛD−2

(
D

2
− 1

)
(41)

for D > 2. On the other hand, there is a solution for any coupling for D = 2
as we will see below.

For the purpose of studying each dimensions more explicitly, the integral
can be expanded in power series in m2/Λ2. The stationary condition is

1

128π3

[
Λ4 − Λ2m2 +

(
−γ − ln

m2

Λ2

)
m4

]
=

1

Ng2
0

(42)
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for D = 6,
1

16π2

[
Λ2 +

(
γ + 2 ln

m2

Λ2

)
m2

]
=

1

Ng2
0

(43)

for D = 4,

− 1

4π

(
γ + ln

m2

Λ2

)
=

1

Ng2
0

(44)

for D = 2. For non-integer D/2, we can use the analytic continuation of the
exponential integral function

ED/2(ε) = ε−1+D/2Γ

(
1− D

2

)
+

(
− 1

1−D/2
+

ε

2−D/2
− ε2

2(3−D/2)
+

ε3

6(4−D/2)
− · · ·

)
. (45)

On the other hand when α = 0 and 〈ni〉 6= 0, we need to expand the
Lagrangian around the solution ni = nicl + ∆ni, and integrate over ∆ni. See
Section 11.4 of Peskin–Schroeder why this procedure is equivalent to add the
source term, integrate over fields, do the inverse Legendre transform, and get
the 1PI effective action. The effective potential Eq. (34) is changed to∫

dDxVeff (α, nicl) =
N

2

[
Tr ln(−~∇2 + iα)−

∫
dDx

1

Ng2
0

(1− nicln
i
cl)iα

]
.(46)

It changes the stationary condition Eq. (37) to

1

Ng2
0

(1− nicln
i
cl) =

∫
dDp

(2π)D
e−~p

2/Λ2

~p2
=

2

D − 2

ΛD−2

(4π)D/2
. (47)

Clearly this equation can be used only for D > 2 when the integral converges
with no mass term. The magnetization is then given by

nicln
i
cl = 1− ΛD−2

(4π)D/2
2Ng2

0

D − 2
= 1− g2

0

gc

2

. (48)

Therefore, one of the components needs to have an expectation value, and
its size is

nicl =

(
1− g2

0

g2
c

)1/2

=

(
Tc − T0

Tc

)1/2

(49)
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as the temperature approaches the critical temperature from below. Here,
we used the proportionality of the bare coupling to the temperature Eq. (25).
This critical exponent β = 1/2 is the same as in the Landau theory.

At the critical point, again for D > 2, α = 0 and the fields ni are free
bosons. Therefore, 〈ni(0)nj(r)〉 ∝ δijr−D+2, and hence the critical exponent
η = 0, again the same as in the Landau theory.

For the critical exponent ν, we need to distinguish three different cases,
D > 4, 2 < D < 4, and D ≤ 2. The answer is not the same for D < 4 as in
the Landau theory. We will discuss each case separately below.

3.1.1 D > 4

Obviously this is not a physically relevant case because our spatial dimensions
is only three; there are systems with fewer dimensions but not more than
three. Nonetheless this is a useful discussion as we can see the correspondence
to the classical Landau theory of phase transitions.

Very close to the critical point, we expect the correlation length to diverge
and hence m → 0. We retain only the leading dependence in m2 in the
expansion Eq. (45) and the gap equation Eq. (37) becomes

em
2/Λ2 ΛD−2

(4π)D/2

(
1

D
2
− 1
− m2/Λ2

D
2
− 2

+O(m4)

)

=
ΛD−2

(4π)D/2

(
1

D
2
− 1
− m2/Λ2

(D
2
− 1)(D

2
− 2)

+O(m4)

)
=

1

Ng2
0

. (50)

Using the critical coupling defined in Eq. (41), we find

ΛD−2

(4π)D/2
m2/Λ2

(D
2
− 1)(D

2
− 2)

=
1

Ng2
c

− 1

Ng2
0

(51)

to the leading order in m2. Therefore, m2 > 0 only for g0 > gc, and

m =

{
(4π)D/2

ΛD−4

(
D

2
− 1

)(
D

2
− 2

)[
1

Ng2
c

− 1

Ng2
0

]}1/2

. (52)

If we go back to the definition of the bare coupling Eq. (25), set Λ ∼ a−1, and
ignore numerical factors, we find a more concrete dependence on fundamental
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parameters

ξ−1 = m ∼ 1

a

(
J

T
− J

Tc

)1/2

∼ 1

a

(
J

Tc

)1/2(
T − Tc
Tc

)1/2

. (53)

Here, we set the Boltzmann constant k = 1, and used the fact that we are
very close to the critical temperature T ∼ Tc. Note that we introduced the
correlation length

〈ni(0)nj(~x)〉 ∝ e−mr = e−r/ξ, (54)

which shows over what distance the spins are correlated.
This result makes a very good sense. For most temperatures T > Tc,

the correlation length ξ is of the order of atomic distance a, and there is no
long-range order because the two-point correlation function vanishes at large
distances. However, as one approaches the critical temperature T → Tc,
the correlation function diverges as (T − Tc)−1/2. At this point all spins be-
come “fashion-conscious” and they are correlated over macroscopic distance,
leading to a possible alignement of large number of spins.

This behavior ξ ∝ (T − Tc)−1/2 is precisely what one expects from Lan-
dau’s theory of phase transition, as is explained in Chapter 8 of Peskin–
Schroeder, in particular Eq. (8.16). This result is sometimes called mean-
field theory or classical phase transition, as one can directly obtain it from
the classical expression of the macroscopic free energy Eq. (8.8).

Note the connection to the running coupling constant in the expression
for the correlation length. In our case, nini = 1 and hence there is no wave
function renormalization possible, γ = 0. Therefore the Callan–Symanzik
equation says

Λ
D

DΛ
〈ni(x)nj(r)〉 =

[
Λ
∂

∂Λ
+ β(g0)

∂

∂g0

]
〈ni(x)nj(r)〉 = 0. (55)

The total derivative D/DΛ is my notation of changing not only the cutoff
but also the parameters of the theory as to not change physics. Recall Λ is
the cutoff and g0 the bare coupling defined with this cutoff. Because the two-
point function depends only on m at large distances 〈ni(x)nj(r)〉 ∝ e−mr, it
simply is

Λ
Dm

DΛ
=

[
Λ
∂

∂Λ
+ β(g0)

∂

∂g0

]
m = 0. (56)

On the other hand, we have worked out m in Eq. (52). Let us introduce the
dimensionless coupling ρ0 = g0Λ(D−2)/2 in the spirit of discussion in section
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12.5 of Peskin–Schroeder. They call T = ρ2
0, but it is confusing with the

temperature and I will not use it. Then Eq. (52) is

m2 ∝ Λ2

[
1

Nρ2
c

− 1

Nρ2
0

]
, (57)

where Nρ2
c = (4π)D/2(D

2
− 1). Then the Callan–Symanzik equation says

β(ρ0) = ρ0 −
ρ3

0

ρ2
c

. (58)

The coupling ρ0 has an ultraviolet fixed point, while it can flow either to zero
if ρ0(Λ) < ρc or to infinity if ρ0(Λ) > ρc. The latter is the case (T > Tc)
where ni acquires a finite correlation length. The finite correlation length is
a non-perturbative effect because it comes with 1/g2

0 and hence it is possible
when the coupling flows to infinity. On the other hand, for (T < Tc), the
coupling flows to zero and hence the low-energy limit is a weakly-coupled
theory of massless ni with the vacuum expectation value.

The Landau theory is justified for D > 4 in the following way. Not only
the stationary condition Eq. (47), we can integrate it over iα and work out
the effective potential Eq. (46) itself. We have

Veff (α, nicl) =
N

2

[
iα

Ng2
c

− iα

Ng2
0

(1− nicln
i
cl)−

ΛD/2

(4π)D/2
(iα)2/Λ2

2(D
2
− 1)(D

2
− 2)

]
.

(59)
Because the path integral over α is done exactly by substituting the stationary
point thanks to the large N limit, the effective potential is then obtained as

Veff (nicl) = N
2D−4(D − 2)(D − 4)πD/2

ΛD−4

[Ng2
0 −Ng2

c (1− nicln
i
cl)]

2

(Ng2
0)2(Ng2

c )
2

∝ [Ng2
0 −Ng2

c (1− ~n2
cl)]

2. (60)

Recalling g2
0 ∝ T , g2

c ∝ Tc, this is exactly the Landau theory where the
potential is a quartic function of the magnetization nicl , and the quadratic
term is proportional to T − Tc. No wonder all the critical exponents came
out to be the same as in the classical Landau theory of phase transition.

3.1.2 2 < D < 4

For this range of spatial dimensions, the leading term in the expansion in
Eq. (45) is the first term with the Gamma function, and the gap equation
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Eq. (37) is

ΛD−2

(4π)D/2

[
1

D
2
− 1

+

(
m2

Λ2

)D
2
−1

Γ

(
1− D

2

)]
=

1

Ng2
0

. (61)

Note that for this range of D, Γ(1 − D/2) < 0. Again using the critical
coupling Eq. (41), we find

ΛD−2

(4π)D/2

∣∣∣∣Γ(1− D

2

)∣∣∣∣ (m2

Λ2

)D
2
−1

=
1

Ng2
c

− 1

Ng2
0

. (62)

The correlation length is therefore

ξ−1 = m = Λ

{
(4π)D/2

ΛD−2|Γ(1−D/2)|

[
1

Ng2
c

− 1

Ng2
0

]}1/(D−2)

∼ 1

a

(
J

Tc

)1/(D−2)(
T − Tc
Tc

)1/(D−2)

. (63)

This is a very interesting result. The behavior of the correlation length
close to the critical temperature is not what is expected from the Landau
theory, but has a different power dependence on the temperature. The power
ξ ∼ (T − Tc)−ν is called the critical exponent, and we found

ν =
1

D − 2
. (64)

It agrees with ν = 1/2 at D = 4 and hence is a continuous function of the
dimensions. Exactly at D = 4 the equation is a little trickier to solve because
of the logarithm in Eq. (43).

Again we study the Callan–Symanzik equation. On the other hand, we
have worked out m in Eq. (52). With the dimensionless coupling ρ0 =
g0Λ(D−2)/2, Eq. (62) is

mD−2 ∝ ΛD−2

[
1

Nρ2
c

− 1

Nρ2
0

]
, (65)

where Nρ2
c = (4π)D/2(D

2
− 1). We find

β(ρ0) =
D − 2

2

[
ρ0 −

ρ3
0

ρ2
c

]
. (66)
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The coupling ρ0 has an ultraviolet fixed point, while it can flow either to zero
if ρ0(Λ) < ρc or to infinity if ρ0(Λ) > ρc. The latter is the case (T > Tc)
where ni acquires a finite correlation length. The finite correlation length is
a non-perturbative effect because it comes with 1/g2

0 and hence it is possible
when the coupling flows to infinity. On the other hand, for (T < Tc), the
coupling flows to zero and hence the low-energy limit is a weakly-coupled
theory of massless ni with the vacuum expectation value.

The effective potential for the magnetization can be worked out the same
way as the D > 4 case. The potential including both iα and nicl is

Veff (iα, ~nicl) =
N

2

[
iα

Ng2
c

− iα

Ng2
0

(1− ~n2
cl)−

(
D

2
− 1

)
Γ

(
−D

2

)
1

Ng2
c

(iα)D/2

ΛD−2

]
.

(67)
Solving the stationary condition for iα, the final effective potential is

Veff (~nicl) =
N

2

1

2Ng2
c

D2
D+2
D−2 − 4

D
D−2 Γ(−D

2
)−

D
D−2

(D(D − 2))
D

D−2

ΛD

[
g2

0 − g2
c (1− ~n2

cl)

g2
0

] D
D−2

∝
[
T − Tc(1− ~n2

cl)
] D

D−2 . (68)

This is different from the Landau theory. The correlation length can be
easily read off from the coefficient of the quadratic term above the critical

temperature ξ−2 ∝ (T − Tc)
D

D−2
−1 and hence ν = 1

D−2
. The magnetization

itself turns on below the critical temperature as |~ncl| ∝ (Tc − T )1/2, which
happens to be the same as in the Landau theory. On the other hand, the
magnetic field at the critical temperature is

H =
∂V

∂|~ncl |
∝ ∂

∂|~ncl |
|~ncl |

2D
D−2 ∝ |~ncl |

D+2
D−2 , (69)

and hence the critical exponent δ = D+2
D−2

. The magnetization does not go

linearly proportional to the applied magnetic field, but rather as |~ncl | ∝ H1/5

in D = 3.

3.1.3 D = 2

The case D = 2 (a spin system on a planar lattice) is very special because
the couping g0 becomes dimensionless. Solving Eq. (44) is easy,

ξ−1 = m = Λe−2π/Ng20e−γ/2. (70)
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Note that this is a solution for any values of the bare coupling, and hence the
correlation length is finite for all temperatures. What it means is that there
is never a true long-range order of spontaneously broken SO(N) symmetry
in two dimensions. This is in accord with the Mermin–Wagner Theorem
that states that a continuous symmetry cannot be spontaneously broken in
two or fewer dimensions for any finite temperature. However the correlation
length can be much much longer than the atomic distance because of the
exponentially factor, which goes as ec/T for a constant c. Even though the
behavior T → 0 cannot be studied rigorously with our method because we
integrated out the non-zero modes in the imaginary time direction, we see
that the zero-temperature limit can break the symmetry. The ground state is
still that of aligned spins. This does not contradict Mermin–Wagner theorem
because the field theory is three-dimensional at T = 0.

Now we study the connection to the running coupling constant in the
expression for the correlation length. Using m in Eq. (70). We find

β(g0) = Λ
∂g0

∂Λ
= −Ng

3
0

4π
< 0. (71)

The negative beta function means the theory is asymptotically free. It is
much easier to deal with a different form,

Λ
∂

∂Λ

1

g2
0

=
N

2π
. (72)

Namely, when we integrate out the momentum slice to bring the cutoff Λ
down to Λ′ = bΛ (0 < b < 1), we make the bare coupling bigger accordingly,

1

g2
0(Λ′)

=
1

g2
0(Λ)

− ln
Λ

Λ′
, (73)

or

g2
0(Λ′) =

1

g−2
0 (Λ)− N

2π
ln(Λ/Λ′)

. (74)

When it is integrated down to Λ′ = Λe−2π/Ng20(Λ), the coupling becomes in-
finitely strong and the perturbation theory breaks down. Thanks to the exact
solution, we nonetheless know what happens. Despite the theory having no
dimensionless parameter, it develops a definite mass scale where the theory
becomes strong and produces a finite correlation length. This is the phe-
nomenon called dimensional transmutation. In Wilsonian way of looking at
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it, is it not too much of a surprise; there is a definite ultraviolet cutoff to the
theory where the theory is defined. The surprise is rather on the emergence
of an exponentially smaller mass scale (larger distance scale) compared to
the cutoff, without finely tuning the bare parameters which was required in
theories D > 2.

The spins are more-or-less lined up together over a some mesoscopic dis-
tance, but macroscopically they are random. The critical temperature is
formally at Tc = 0 where the ground state still breaks the symmetry. For
any finite temperatures, however, the symmetry is not broken.

The effective potential can be computed as in the previous cases, and we
obtain

Veff (~ncl) =
N

8π
Λ2e−γ−4π/Ng20e4π~n2

cl/Ng
2
0 . (75)

Together with the kinetic term 1
2g20

(~∇nicl)
2, it is easy to read off the correlation

length ξ−2 = m2 = Λ2e−γ−4π/Ng20 . The response to the finite magnetic field
is highly non-trivial with the exponential dependence.

3.1.4 D = 1

For D = 1, the gap equation Eq. (37) becomes

1

2m
− 1√

π Λ
=

1

Ng2
0

. (76)

Therefore,

ξ = m−1 =
2

Ng2
0

+
2√
π Λ

. (77)

Again there is a solution for any values of g0 and hence there is no long-
range order. In addition, the correlation length is very short. Using the bare
coupling in Eq. (25), we find

ξ = j2a
2

N

J

T
+

2√
π Λ

, (78)

and hence of the order of the atomic distance in general. Again as T → 0, the
correlation length does become large, but in this case it goes like power and a
macroscopic correlation would require the temperature exponentially close to
zero. The ground state theoretically breaks symmetry, yet practically never
does.
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3.2 Perturbation Theory around D = 2

In the previous section, we solved the Heisenberg model in all dimensions in
the large N limit. We did not rely on perturbation theory and hence the
result was powerful and dramatic. On the other hand, we cannot study the
realistic system with N = 3.

At D = 2 the non-linear sigmal model is renormalizable. Even though
there is nothing wrong with non-renormalizable field theories, the results
are sensitive to the physics at the cutoff scale. On the other hand, with
renormalizable field theories you can work out all physical quantities using
the “measurements” close to the energy scale you have probed and pretend
that the cutoff scale is infinite. This provides an extra comfort in the results
you work out with perturbation theory.

To use the perturbation theory, we need to solve the constraint
∑N

i=1 n
ini =

1 explicitly as
ni = (π1, · · · , πN−1, (1− πiπi)1/2). (79)

The action is then

S =
1

2g2
0

∫
dDx

[
N−1∑
i=1

(~∇πi)2 +
(πi~∇πi)2

1− πiπi

]
. (80)

Changing the normalizaton πi → g0π
i, we find

S =
1

2

∫
dDx

[
N−1∑
i=1

(~∇πi)2 + g2
0

(πi~∇πi)2

1− g2
0π

iπi

]
. (81)

In power series in g0, we can develop perturbation theory.
The actual computation is described in detail in the book, and let me

just highlight the important results in D = 2. First of all, the beta function
is

β(g) = −(N − 2)
g3

4π
+O(g3). (82)

This is consistent with the exact result for large N , β(g) = −N g3

4π
. In

particular, it is asymptotically free and it generates a finite correlation length
no matter how small g0 is due to the dimensional transmutation. (Strictly
speaking, this conclusion cannot be proven from perturbation theory as the
higher order terms could in princple lead the coupling to an infrared fixed
point. However the Mermin–Wagner theorem suggests this must be the case,

19



and the perturbation theory supports it. For large N , we could reallly show
the finite correlation length even though it was beyond the validity of the
perturbation theory.)

Second, the beta function vanishes for N = 2. This makes sense because
for N = 2 we can parameterize ni = (cos θ, sin θ), and the action is that of a
free scalar,

S =
1

2g2
0

∫
d2x(~∇θ)2. (83)

Therefore, the beta function vanishes to all orders in perturbation theory.
However, even this free theory shouldn’t be underestimated. The spin-spin
correlation function for s(~x) = π1 +iπ2 can be worked out (see Problem 11.1)
that shows a power law behavior

〈s(0)s∗(~x)〉 ∝ |~x|−cg20 , (84)

where c is a numerical constant. Recall g2
0 ∝ T and for any finite temperature

the correlation vanishes at very large distances. This is another manifestation
of the Mermin–Wagner theorem that continuous symmetries (in this case
it is a rotation among two components SO(2)) cannot be broken in two
dimensions at a finite temperature.

For D = 2 + ε but ε � 1, we can still apply the perturbation theory in
the following way. Peskin–Schroeder define T = g2

0ΛD−2 as a dimensionless
coupling. Indeed, this combination is proportional to the temperature even
though it may not be exactly be the same. For this dimensionless coupling,
the beta function is

β(T ) = (D − 2)T − (N − 2)
T 2

2π
+O(T 3). (85)

There is an ultraviolet fixed point

T∗ =
2πε

N − 2
, (86)

which is small enough to trust the perturbation theory is ε is small. Then us-
ing the perturbative calculation of anomalous dimension factors, one arrives
at the predictions

η =
ε

N − 2
, ν =

1

ε
. (87)

They are consistent with the large N result η = 0 and ν = 1
D−2

.
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4 O(N) Linear Sigma Model

To understand the behavior of the theory near D = 4, a different description
of the theory is suitable, based on linear sigmal models. This is because it
is renormalizable and perturbation theory is worked out rigorously without
referring to the cutoff-scale quantities.

This model is called linear sigma model because of the following reason.
Consider the φ4 theory with the symmetry-breaking potential

L =
1

2
∂µφ

i∂µφi − λ

4
(φiφi − v2)2. (88)

At the minimum of the potential, φiφi = v2. Choosing

〈φi〉 = (0, · · · , 0, v), (89)

SO(N) symmetry is broken to SO(N − 1). To understand the excitation
spectrum of the theory, the book parameterizes the field as

φi = (π1, · · · , πN−1, v + σ). (90)

The πi fields are massless Nambu–Goldstone bosons that describe the fluctu-
ation of the vacuum along the bottom of the potential, while σ is a massive
field that describes the fluctuation of vacuum around the bottom of the po-
tential. Because of the notation σ for this mode, it is called sigma model,
while the kinetic term for πi and σ are the usual ones 1

2
(∂πi)2 + 1

2
(∂σ)2. The

fields span the linear space RN and hence the linear sigma model.
On the other hand, we can also parametrize the N scalar fields as

φi = (v + σ)ni, nini = 1. (91)

Noting ni∂µn
i = 1

2
∂µ(nini) = 0, we find

∂µφ
i∂µφi = (ni∂µσ + (v + σ)∂µn

i)(ni∂µσ + (v + σ)∂µni)

= ∂µσ∂
µσ + (v + σ)2∂µn

i∂µni. (92)

Hence the Lagrangian density is

L =
1

2
∂µσ∂

µσ +
1

2
(v + σ)2∂µn

i∂µni − λ

4
(2vσ + σ2)2. (93)
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Therefore, σ is a field of finite mass 2λv2, while ni are N−1 massless Nambu–
Goldstone bosons (remember the constraint nini = 1 removes one of the
components). The non-linear sigma model is obtained by taking the limit
λ → ∞, where the sigma becomes infinitely massive and can be integrated
out from the theory. The field content ni not longer spans a linear space but
rather a non-linear space SN−1, hence non-linear sigma model. It is rather
strange that it is called non-linear sigma model when σ is actually removed
from the theory, but it is just a historical name.

In general, when the symmetry G breaks to H ⊂ G, the remaining degrees of free-
dom (Nambu–Goldstone bosons) span the coset space G/H. In the case above, it is
SO(N)/SO(N − 1), which is nothing but SN−1. The term non-linear sigma model is
used even more broadly, referring to scalar field theory where the fields span any non-
linear space with the metric ds2 = gij(x)dxidxj . The Lagrangian density is then given by
L = 1

2gij(φ)∂µφi∂µφj .
The linear sigma model is relevant for us because it can be regarded as the

description of low-enegy behavior of the non-linear sigma model. Recall that
in D = 4 the beta function for the linear sigma model is positive, and hence
the coupling goes to infinite at some high energy scale (Landau pole). We can
identify the Landau pole as the cutoff where the non-linear sigma model is
defined (atomic scale). As one integrate out momentum slices, the coupling
flows to smaller and smaller values and at some point the perturation theory
becomes good. This way, the linear sigma model emerges from the non-linear
sigma model. In other words, the potential

V =
λ

4
(φiφi − v2)2 (94)

is infinitely steep to enforce the constraint φiφi = v2 at the cutoff, while it
is more relaxed at lower energies because of the “block spin” procedure that
averages out the spins. Therefore, we can use the linear sigma model for our
study.

Again the book describes in detail how to work out various critical expo-
nents using the solutions to the Callan–Symanzik equation. Here I summarize
only the highlights.

First of all, the beta function for the coupling λ in D = 4− ε dimensions
has an infrared fixed point,

β(λ) = (N + 8)
λ2

8π2
− ελ. (95)
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Now matter what values of λ the theory starts out at the cutoff, it flows to
the fixed point as long as we study the behavior at large enough distances.
The fixed-point coupling is

λ∗ =
8π2

N + 8
ε. (96)

The perturbation theory is trustworthy when λ∗ is small, and hence small ε.
The fixed-point is extremely useful as the theory becomes predictive. Inde-
pendent of the details of the cutoff scale theory, we can work out predictions
at the fixed point. The only remaining free parameter is the coefficient of the
mass operator φ2, which is proportional to T − Tc. The cutoff-scale theory
even doesn’t have to be Heisenberg model anymore as long as it leads to the
linear sigma model at long distances; they lead to the same predictions. This
remarkable simplification of long-distance behavior close to the critical point
is called universality , the basis of all studies of critical phenomena.

Here is a table that shows the consistency between the large N exact
results for non-linear sigma model and finite N result for linear sigma model
close to four dimensions.

critical exponents large N D = 4− ε
ν−1 D − 2 2− γφ2(λ∗) = 2− N+2

N+8
ε

η 0 2γ(λ∗) = N+2
2(N+8)2

ε2

β 1
2

1
2
(D − 2 + η)ν = 1

2
(1− 3

N+8
ε)

α D−4
D−2

2−Dν
δ D+2

D−2
D+2−2γ(λ∗)
D−2+2γ(λ∗)

Here,

γ(λ∗) = (N + 2)
λ2
∗

4(8π2)2
=

N + 2

4(N + 8)2
ε2, γφ2(λ∗) = (N + 2)

λ∗
8π2

=
N + 2

N + 8
ε

(97)
to this order in perturbation theory.

5 D = 3, Finite N

Working out quantitative predictions for D = 3 and finite N is a big chal-
lenge. The IR fixed point still persists, but the fixed-point coupling is large
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λ∗ ∼ 8π2 and hence the fixed-order perturbation theory may not be trusted.
Therefore, we need to come up with a clever way of summing the perturbation
series and then extrapolate it to ε = 1.

Another complication is that perturbation series has zero radius of conver-
gence. Yes, zero. There is a very simple way to understand why, as explained
in a separate lecture notes written for 221A. The main part of the argument
is this. If the perturbation series in λ has a finite radius of convergence,
it should converge also for a small negative value. However, for a negative
λ, the potential is not bounded from below, and there is a tunneling from
φ = 0 to φ = ∞. The tunneling amplitude estimated by the WKB method
goes as e−c/|λ| for a constant c. Taylor expansion of this amplitude to any
finite orders in |λ| around λ = 0 vanishes because of the exponential factor.
Therefore, the perturbation series cannot have a finite radius of convergence,
and hence should be regarded as an asymptotic series.

There is a general prescription called Borel summation to deal with an
asymptotic series, sum the first finite number of terms, and estimate the
entire series. Suppose you are computing a perturbation series

A(g) =
∞∑
k=0

Akg
k. (98)

The problem is that the high-order terms misbehave, Ak ∼ ckb0(−a)kk!(1 +
O(k−1)) as k → ∞. This is the behavior one can identify even in a simple
integral (i.e., zero-dimensional quantum field theory)∫ ∞

−∞
dx e−x

2−gx4

, (99)

if you expand it in power series in g. Instead of trying to sum this series that
diverges anyway, one defines

Bb(g) =
∞∑
k=0

Ak
Γ(k + b+ 1)

gk. (100)

Because of the Gamma function in the denominator, this series converges.
Then you perform a Laplace transform,

A(g) =

∫ ∞
0

dt tbe−tBb(gt). (101)
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If the series converges uniformly, one can interchange the sum and the inte-
gral, and one can see the equivalence very easily. However for an asymptotic
series, this method (Borel sum) converges while the simple perturbative series
does not.

In the paper J. C. Le Guillou and J. Zinn-Justin, “Critical exponents from
field theory,” Phys. Rev. B 21, 3976-3998 (1980), they employ the Borel
sum to study the linear sigma model in D = 3. The results are reproduced
in Table 13.1 in Peskin–Schroeder (with some updates) on page 450. The
agreement with the experiments is remarkable.

6 Conformal Field Theories

The field theories at the fixed points have long-range correlations yet with
funny powers (critical exponents). These theories are called “conformal field
theories.” First of all, the theories at the critical points are “scale-invariant”
because all correlation functions follow power laws and hence there is no
dimensionful parameter such as mass. Classically non-linear sigma models
in D = 2 are scale invariant, so are non-abelian gauge theories with no quarks
or massless quarks. However, these theories develop scale dependence due
to the renormalization condition (or UV cutoff) and are not scale-invariant
quantum mechanically. On the other hand, theories with apparent mass
scales can flow to scale-invariant theories in the infrared. It turns out that
most scale-invariant theories are also conformally invariant. Conformal group
is generated by the usual Lorentz generators

Mµν = −i(xµ∂ν − xν∂µ), (102)

translation generators
Pµ = −i∂µ (103)

together with two new sets of generators for dilation (overall scale change)

D = −xµ∂µ (104)

and the special conformal transformations

Kµ = − i
2

(x2∂µ − 2xµxν∂
ν). (105)
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Kµ generate transformations which are a combination of inversion xµ →
xµ/x2, then translation xµ/x2 + kµ, and the inversion back

xµ/x2 + kµ

(xν/x2 + kν)2
=

xµ/x2 + kµ

1/x2 + 2(kνxν)/x2 + k2

=
xµ + kµx2

1 + 2(k · x) + k2x2

= xµ − 2(k · x)xµ + kµx2 +O(k2)

= xµ + kν(2x
νxµ∂ν − x2∂ν)x

µ +O(k2)

= (1− 2ikνK
ν)xµ +O(k2). (106)

Together, a conformal group in D-dimensional Minkowski space forms the
SO(D, 2) symmetry. Similarly a conformal group in D-dimensional Eu-
clidean space forms the SO(D + 1, 1) symmetry.

In two dimensions, the conformal group can be extended far beyond
SO(3, 1) symmetry to an infinite-dimensional symmetry based on the Vi-
rasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12π
n(n2 − 1)δn,−m. (107)

Because of this powerful symmetry, one can classify the possible conformal
field theories and predict their properties in great detail.

For example, the critical point of the Ising model is described by one
of the so-called minimal models of two-dimensional conformal field theory.
This identification allows one to compute the correlation functions exactly at
the critical point without relying on perturbation theory. Critical behavior of
many other statistical systems have been studied with conformal field theory.
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