Functional Method

We solve Problem 9.2 in Peskin—Schroeder.

(a)
We would like to evaluate the partition function
7 = trle PH] (1)

using the path integral. First of all, the trace of an arbitrary operator O over
the Hilbert space can be taken in any basis, e.g., energy eigenstates |n) or
position eigenstates |z),
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The next step is to divide up the Boltzmann factor e ?# into many many
small pieces,

tr[e ] = /dx<x|eﬁH|x>

= /dl’ H <$|6_BH/N|ZEN_1>CZI’N_1<ZEN_1|6_/6H/N|I'N_2>dlL'N_2<JZN_2| s

=1

s |z yday (| e PN |2 (3)



For the Hamiltonian H = % + V(x), we compute the matrix element
(z|e=H|y) for small e = 3/N. We find
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because of the Baker-Campbell-Hausdorff formula. We ignore O(€?) piece
in the exponent. Then we insert the complete set of momentum eigenstates,
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Therefore, using the notation o = zy = ,
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At the last step, the limit N — oo was taken. This is nothing but the
Euclidean action, namely the action after the Wick rotation t = —ir. The
path x(7) satisfies the periodic boundary condition x(h3) = z(0).

(b)

The specified expansion (h =1 below),]L
TINT

T use 7 instead of ¢ to distinguish real and imaginary times.
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implies that x_,, = x. In particular, z, is real. The Euclidean action is
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In the second line, we used m = —n from the 7 integral. Therefore, the

path integral is Gaussian and is given by the product of eigenvalues up to an
overall -dependent (but w-independent) factor,
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x %1:[ (1+ 2m2 )]_1 = [sinh%d] _1. (10)

Here, we used the infinite product representation of sinhz. Up to a (-
dependent (but w-independent) factor, it is?
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This precisely matches the known expression of the partition function for a
harmonic oscillator,
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As a prepration to the next problem, it is instructive to rewrite the Eu-
clidean action as

hB
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and hence
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2One can of course work out the overall factor carefully with a lot more work. See
http://hitoshi.berkeley.edu/221A/pathintegral.pdf



(c)

The partition function is given in terms of the path integral

/ng 7, m)e 5P, (15)

where the Euclidean action is (h = ¢ = 1)

SE_/dxf d7—¢2 + (90 + m?e?] /da:j{ dr ¢> (0% + m2).
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Here, ¢ = d¢/dr. The path integral therefore yields
Z = [det(=8% + m?)]"V/? = [det(—8? — V* + m?)] /2. (17)
This determinant is a product of many momentum modes V= ip,

Z = [ [ldet(—2 + p* + m?)] 7"/, (18)
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Using the result from the part (b), the determinant is
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where w(p) = \/p? + m2. This expression is indeed the partition function for
a relativistic boson of mass m.

(d)
We are given the Euclidean action
B . _
Se= ¢ dr [+ wi] (20)
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Because of the anti-periodic boundary condition ¢(3) = —(0), we expand
it in Fourier series
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Then the Euclidean action is

il g L 2mi 1 (L
Sp = f dr— e 2rint)T/B <— (m + —> +w> P2 t32)7/8
) 7"
- [ 2m 1
= n\ o a n- 22
i (55 (1) +) 2
Therefore the path integral over Grasmannian variables gives
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This infinite product can be rewritten as

7= 5 (g ][5 (rra) o]

[ ey

n=0

(24)

It is useful to recall the infinite product representation of cosh,

[e.e]

coshz =[] [1 + #i%y} . (25)
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We find

On the other hand, the canonical quantization of the same Lagrangian
in the real time is based on the anti-commutation relations {i, ¢} = 1 and
{4, 9} = {1, 1} = 0 with the Hamiltonian H = w%(@E@D—Q/J@Z) =w (Qﬁw — %)
The ground state is annihilated by the annihilation operator 1|0) = 0 while
the excited state is [1) = v|0). Because of the anticommutation {1,%} =
21)? = 0, one cannot occupy the sate with more than once, 1|1) = ?|0) = 0.
The energy eigenvalues are

H:w(@w—%> :ig. (27)
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Therefore, the partition function is

Bw
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which agrees with the path integral up to an overall factor.

(e)

The Euclidean path integral including the gauge fixing as in Eq. (9.56)
(Peskin—Schroeder) is

7 = / DA e T (372 0u4) (ot 52) (29)

up to an overall constant. In Feynman gauge ({£ = 1), the calculation is
extremely simple.
The Euclidean action can be rewritten as

1 1
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Therefore, it is nothing but a collection of four scalar fields (u = 0, 1,2, 3),
and its integral over A, yields [(det 9%)71/2]* = (det §?)~2. On the other
hand, the Faddeev—Popov determinant (det 9?) cancels one of the powers
and hence

Z = (det 9?)7L. (31)

This is square of the determinant of a massless boson, correctly account for
two polarization states of the photon for the partition function.



