
Functional Method

We solve Problem 9.2 in Peskin–Schroeder.

(a)

We would like to evaluate the partition function

Z = tr[e−βH ] (1)

using the path integral. First of all, the trace of an arbitrary operator O over
the Hilbert space can be taken in any basis, e.g., energy eigenstates |n〉 or
position eigenstates |x〉,

trO =
∑

n

〈n|O|n〉

=

∫ ∫ ∑
n

〈n|x〉dx〈x|O|y〉dy〈y|n〉

=

∫ ∫
dxdy〈x|O|y〉

∑
n

〈y|n〉〈n|x〉

=

∫ ∫
dxdy〈x|O|y〉〈y|x〉

=

∫ ∫
dxdy〈x|O|y〉δ(x− y)

=

∫
dx〈x|O|x〉. (2)

The next step is to divide up the Boltzmann factor e−βH into many many
small pieces,

tr[e−βH ] =

∫
dx〈x|e−βH |x〉

=

∫
dx

N−1∏
i=1

〈x|e−βH/N |xN−1〉dxN−1〈xN−1|e−βH/N |xN−2〉dxN−2〈xN−2| · · ·

· · · |x1〉dx1〈x1|e−βH/N |x〉 (3)

1



For the Hamiltonian H = p2

2m
+ V (x), we compute the matrix element

〈x|e−εH |y〉 for small ε = β/N . We find

〈x|e−εH |y〉 = 〈x|e−εp2/2me−εV (x)e−O(ε2)|y〉 (4)

because of the Baker–Campbell–Hausdorff formula. We ignore O(ε2) piece
in the exponent. Then we insert the complete set of momentum eigenstates,

〈x|e−εH |y〉 =

∫
〈x|e−εp2/2m|p〉dp〈p|e−εV (x)e−O(ε2)|y〉

=

∫
dp

1√
2π~

e−εp2/2meipx/~ 1√
2π~

e−εV (y)e−ipy/~

=
1

2π~

√
2πm

ε
e−m(x−y)2/2ε~2

e−εV (y) (5)

Therefore, using the notation x0 = xN = x,

tr[e−βH ] =

∫ N∏
i=1

dxi√
2π~2ε

e−SE/~, (6)

where

SE = ~
N∑

i=1

[
m(xi − xi−1)

2

2ε~2
+ εV (xi)

]

=
~β
N

N∑
i=1

[
m(xi − xi−1)

2

2(~β/N)2
+ V (xi)

]

→
∮ ~β

0

[
m

2

(
dx

dτ

)2

+ V (x)

]
dτ. (7)

At the last step, the limit N → ∞ was taken. This is nothing but the
Euclidean action, namely the action after the Wick rotation t = −iτ . The
path x(τ) satisfies the periodic boundary condition x(~β) = x(0).

(b)

The specified expansion (~ = 1 below),1

x =
1√
β

∑
n

xne
2πinτ/β (8)

1I use τ instead of t to distinguish real and imaginary times.
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implies that x−n = x∗n. In particular, x0 is real. The Euclidean action is

SE =

∮ β

0

dτ
∑
n,m

1

2

[
2πin

β

2πim

β
+ ω2

]
1

β
xne

2πinτ/βxme
2πimτ/β

=
1

2
ω2x2

0 +
∞∑

n=1

(
(2πn)2

β2
+ ω2

)
|xn|2. (9)

In the second line, we used m = −n from the τ integral. Therefore, the
path integral is Gaussian and is given by the product of eigenvalues up to an
overall β-dependent (but ω-independent) factor,

Z ∝

[
ω

∞∏
n=1

(
(2πn)2

β2
+ ω2

)]−1

∝

[
βω

2

∞∏
n=1

(
1 +

β2ω2

(2πn)2

)]−1

=

[
sinh

βω

2

]−1

. (10)

Here, we used the infinite product representation of sinh z. Up to a β-
dependent (but ω-independent) factor, it is2

Z ∝
[
eβω/2 − e−βω/2

]−1
=

e−βω/2

1− e−βω
. (11)

This precisely matches the known expression of the partition function for a
harmonic oscillator,

Z =
∞∑

n=0

e−βω(n+1/2) =
e−βω/2

1− e−βω
. (12)

As a prepration to the next problem, it is instructive to rewrite the Eu-
clidean action as

SE =

∮ ~β

0

dτ
1

2
x(τ)

[
−∂2

τ + ω2
]
x(τ), (13)

and hence

Z = [det(−∂2
τ + ω2)]−1/2 =

e−βω/2

1− e−βω
. (14)

2One can of course work out the overall factor carefully with a lot more work. See
http://hitoshi.berkeley.edu/221A/pathintegral.pdf
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(c)

The partition function is given in terms of the path integral

Z =

∫
Dφ(~x, τ)e−SE , (15)

where the Euclidean action is (~ = c = 1)

SE =

∫
d~x

∮ β

0

dτ
1

2

[
φ̇2 + (~∇φ)2 +m2φ2

]
=

∫
d~x

∮ β

0

dτ
1

2
φ(−∂2 +m2)φ.

(16)
Here, φ̇ = dφ/dτ . The path integral therefore yields

Z = [det(−∂2 +m2)]−1/2 = [det(−∂2
τ − ~∇2 +m2)]−1/2. (17)

This determinant is a product of many momentum modes ~∇ = i~p,

Z =
∏

~p

[det(−∂2
τ + ~p2 +m2)]−1/2. (18)

Using the result from the part (b), the determinant is

Z =
∏

~p

e−βω(~p)/2

1− e−βω(~p)
, (19)

where ω(~p) =
√
~p2 +m2. This expression is indeed the partition function for

a relativistic boson of mass m.

(d)

We are given the Euclidean action

SE =

∮ β

0

dτ
[
ψ̄ψ̇ + ωψ̄ψ

]
, (20)

Because of the anti-periodic boundary condition ψ(β) = −ψ(0), we expand
it in Fourier series

ψ(τ) =
1√
β

∑
n

ψne
2πi(n+ 1

2
)τ/β, ψ̄(τ) =

1√
β

∑
n

ψ̄ne
−2πi(n+ 1

2
)τ/β. (21)
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Then the Euclidean action is

SE =

∮ β

0

dτ
1

β

∑
n,m

ψ̄ne
−2πi(n+ 1

2
)τ/β

(
2πi

β

(
m+

1

2

)
+ ω

)
ψme

2πi(m+ 1
2
)τ/β

=
∑

n

ψ̄n

(
2πi

β

(
n+

1

2

)
+ ω

)
ψn. (22)

Therefore the path integral over Grasmannian variables gives

Z =

∫ ∏
n

dψndψ̄ne
−SE =

∏
n

[
2πi

β

(
n+

1

2

)
+ ω

]
(23)

This infinite product can be rewritten as

Z =
∞∏

n=0

[
2πi

β

(
n+

1

2

)
+ ω

] [
−2πi

β

(
n+

1

2

)
+ ω

]

=
∞∏

n=0

[(
2π

β

)2 (
n+

1

2

)2

+ ω2

]
. (24)

It is useful to recall the infinite product representation of cosh,

coshx =
∞∏

n=0

[
1 +

x2

π2(n+ 1
2
)2

]
. (25)

We find

Z =
∞∏

n=0

(
2π

β

)2 (
n+

1

2

)2
[
1 +

(
βω

2π(n+ 1
2
)

)2
]

∝ cosh
βω

2
∝ eβω/2 + e−βω/2. (26)

On the other hand, the canonical quantization of the same Lagrangian
in the real time is based on the anti-commutation relations {ψ, ψ̄} = 1 and
{ψ, ψ} = {ψ̄, ψ̄} = 0 with the Hamiltonian H = ω 1

2
(ψ̄ψ−ψψ̄) = ω

(
ψ̄ψ − 1

2

)
.

The ground state is annihilated by the annihilation operator ψ|0〉 = 0 while
the excited state is |1〉 = ψ̄|0〉. Because of the anticommutation {ψ̄, ψ̄} =
2ψ̄2 = 0, one cannot occupy the sate with more than once, ψ̄|1〉 = ψ̄2|0〉 = 0.
The energy eigenvalues are

H = ω

(
ψ̄ψ − 1

2

)
= ±ω

2
. (27)
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Therefore, the partition function is

Z = eβω/2 + e−βω/2 = 2 cosh
βω

2
, (28)

which agrees with the path integral up to an overall factor.

(e)

The Euclidean path integral including the gauge fixing as in Eq. (9.56)
(Peskin–Schroeder) is

Z =

∫
DAµe

−
R

d4x( 1
4
F 2

µν− 1
2ξ

(∂µAµ)2)(det ∂2) (29)

up to an overall constant. In Feynman gauge (ξ = 1), the calculation is
extremely simple.

The Euclidean action can be rewritten as

SE =

∫
d4x

(
1

4
F 2

µν −
1

2
(∂µAµ)2

)
=

∫
d4x

1

2
[∂µAν(∂µAν − ∂νAµ) + (∂νAν)(∂µAµ)]

=
1

2

∫
d4x

[
−Aν(∂

2Aν − ∂ν(∂µAµ))− Aν∂ν(∂µAµ)
]

= −1

2

∫
d4xAν∂

2Aν . (30)

Therefore, it is nothing but a collection of four scalar fields (µ = 0, 1, 2, 3),
and its integral over Aµ yields [(det ∂2)−1/2]4 = (det ∂2)−2. On the other
hand, the Faddeev–Popov determinant (det ∂2) cancels one of the powers
and hence

Z = (det ∂2)−1. (31)

This is square of the determinant of a massless boson, correctly account for
two polarization states of the photon for the partition function.
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