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1 Poincaré Symmetry

In order to understand the number of degrees of freedom we need to include
in a Lorentz-invariant theory, we need to develop the representation theory
of the Poincaré symmetry. The Poincaré symmetry consists of two sets of
symmetries of the Minkowski spacetime. Space-time translations generated
by the energy-momentum four vector P µ, and the Lorentz transformations
(rotation and boost) generated by the operators Mµν .

I can’t remember the commutation relations, and I always work them out
using the analogy to the single-particle quantum mechanics. The translation
generates are energy and momentum Pµ = i∂µ, and the boost and rotation
Mµν = xµpν − xνpµ = i(xµ∂ν − xν∂µ).∗ The commutators are

[P µ, P ν ] = 0, (1)

for the translation generators,

[Mµν ,Mρσ] = [xµi∂ν − xνi∂µ, xρi∂σ − xσi∂ρ]
= igνρMµσ − igµρMνσ − igνσMµρ − igµσMνρ, (2)

for the boost and rotation generators, and

[Mµν , P ρ] = [xµi∂ν−xνi∂µ, i∂ρ] = gµρ∂ν−gνρ∂µ = −i(gµρP ν−gνρP µ), (3)

between them. These expressions are true for any dimensions, even for dif-
ferent signatures, such as Euclidean space.

If you specialize them to the spatial components only in three-dimensional
space, we recover familiar commutators from quantum mechanics, by identi-
fying Jk = εklmM lm,

[J1, J2] = [M23,M31] = ig33M21 = i(−1)(−M12) = iJ3, (4)

[J1, P 2] = [M23, P 2] = −ig22P 3 = iP 3. (5)

∗Peskin–Schroeder uses the notation Jµν in Chapter 3. Somehow I can’t get used to
this notation and I stick with mine: Mµν .
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In four dimensions, there are two Casimir operators of the Poincaré sym-
metry. One is P 2 = P µPµ, which obviously commutes with P µ and is also
Lorentz invariant and hence commutes with Mµν . The other is made of
Pauli-Lubanski pseudo-vector

W µ =
1

2
εµνρσPνMρσ. (6)

Note that the orbital angular momentum drops out from Mρσ because of the
anti-symmetry with the momentum vector. Namely it picks up only the spin
part of the angular momentum.

Commutators of W µ with P κ leave another Pρ or Pσ contracted with the
Levi–Civita symbol and hence vanish. It transforms as a Lorentz vector and
hence has the same commutator with Mµν as the momentum vector, but has
the opposite transformation under parity. Clearly W 2 = W µWµ is Lorentz
invariant and hence commutes with all generators.

In general in even dimensions D = 2k, one can define higher dimensional
analog of the Pauli–Lubanski pseudo-tensors of the type PM,PM2, · · · , PMk−1,
and their Lorentz-invariant squares. Together with P 2, there are k Casimir
operators.

In odd dimensions D = 2k + 1, there are the same k Casimir operators
and an additional one εµ1µ2···µ2k+1Pµ1Mµ2µ3 · · ·Mµ2kµ2k+1

that does not need
to be squared to be Lorentz-invariant.

In order to understand representations of the Poincaré group, we first
note that it is a non-compact group because the Lorentz boost can be con-
tinued indefinitely, and also space and time translations. A non-compact
group in general does not admit a finite-dimensional unitarity representa-
tion, except for when non-compact generators can be consistently be set
to zero (then it reduces to the representation theory of a compact group).
Therefore, the Poincaré group with non-zero four-momentum has only in-
finite dimensional representations on Hilbert space (which by definition re-
quires unitarity). In other words, there are infinite number of states with
different four-momenta P µ = mγ(1, β sin θ cosφ, β sin θ sinφ, β cos θ) related
by Lorentz boosts. What concerns us is the multiplicity of states (the num-
ber of degrees of freedom) for a particle of fixed four momentum. That is
the issue of the little group in the next section.
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2 Little Group

In order to develop the representation theory of the Poincaré algebra, we
first look at the Casimir operator P 2. Clearly, physics is quite different for
P 2 > 0 (massive), P 2 = 0 (massless), and P 2 < 0 (tachyonic). To under-
stand the multiplicity of the single particle state, we choose a particular four-
momentum in each case and work out the representation theory of remaining
symmetries. The remaining symmetry that keeps the four-momentum un-
changed is called Wigner’s little group.

(a) Massive case

This is the case when P 2 = m2 > 0. We can choose the rest frame, namely
the reference frame in which P µ = (m, 0, · · · , 0), without a loss of generality
by using a Lorentz boost.

The remaining generators that leave this four-momentum unchanged is
M ij where i, j = 1, · · ·D− 1, namely spatial rotations without boosts. They
form the little group SO(D − 1), whose representation theory is well under-
stood. In the four-dimensional spacetime, it is SO(3), whose Lie algebra is
the same as that of SU(2). The representations are given in terms of the
spin j with the multiplicity 2j + 1.

In general, a massive spin 1 particle is a vector representation of the little
group SO(D − 1) and hence has D − 1 degrees of freedom. A massive spin
2 particle is a traceless symmetric rank-two tensor and has D(D − 1)/2− 1
independent components. A massive spin 1/2 particle has 2[(D−2)/2] degrees
of freedom, where [.] is the Gauss’ symbol to take the largest integer equal
or less than the argument.†

In the four-dimensional case, the Pauli–Lubanski vector is

W µ =
1

2
εµνρσPνMρσ =

1

2
mεµ0ρσMρσ. (7)

Therefore,
W 0 = 0, W i = −msi (8)

where ~s is the spin operator. The Casimir W µWµ = −m2~s2 = −m2s(s+ 1).
~s2 is the Casimir operator of SO(3) rotation group.

†For the construction of spin 1/2 representations in general dimensions, see the lecture
notes on Clifford algebra.
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In general, the Casimir operators of the Poincaré algebra (apart from
P 2 = m2) correspond to the Casimir operators of the little group SO(D−1);
there are k of them for SO(2k) and SO(2k + 1).

(b) Massless case

This is quite different from the massive case. Without a loss of general-
ity, we can choose P µ = E(1, 1, 0, · · · , 0). Clearly the generators M ij with
i, j = 2, · · ·D leave the four-momentum unchanged. There are, however,
other generators that also leave the four-momentum unchanged. For any
i = 2, · · · , D, P i = 0 and hence

[M0i, P µ] = −i(g0µP i − giµP 0) = igiµP 0, (9)

[M1i, P µ] = −i(g1µP i − giµP 1) = igiµP 1. (10)

Because P 0 = P 1, we find

[M0i −M1i, P µ] = 0. (11)

Therefore, M ij and Ki ≡M0i−M1i form the little group. The Ki’s commute
with each other, and transform as a vector under M ij,

[M ij, Kk] = −i(gikKj − gjkKi) = i(δikKj − δjkKi). (12)

In other words, they form the “Poincaré algebra” of D − 2 dimensional Eu-
clidean space, which is called the “Euclidean motion group” ED−2 which
consists of rotations and spatial translations.‡

Since the Euclidean motion group is non-compact, in general its unitary
representations are infinite dimensional. We do not want a single particle
to have infinite degrees of freedom.§ Then we must set all of the non-
compact generators Ki identically zero, which is consistent with the alge-
bra. The remaining generators form a compact group SO(D − 2) (called
maximum compact subgroup of a non-compact group), which have happily
finite-dimensional unitary representations.¶

‡Unfortunately this notation of En has nothing to do with E6,7,8 exceptional simple
Lie groups. I know it is a confusing notation, but it is used in the literature.
§If you have a good reason why we should consider this, let me know! Even string

theory has only finite number of degrees of freedom for a given mass.
¶The mismatch between the little groups, SO(D − 1) for massive and SO(D − 2) for

massless particles, is the source of strong constraints on theories that incorporate both of
them, i.e., string theory. The consistency having both leads to the requirement of critical
dimensions, namely 26 for bosonic and 10 for supersymmetric string.
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A massless spin one particle (gauge boson) has D− 2 components, while
the massless spin two (graviton) (D − 1)(D − 2)/2− 1. A massless spin 1/2
particle has 2[(D−3)/2] independent components.

Setting D = 4, we find 2 components for spin 1, again 2 for spin two, and
one for spin 1/2. Note for four dimensions, the maximum compact subgroup
of the little group is SO(2), which has only one-dimensional irreducible repre-
sentations. Each irreducible representation corresponds to a definite helicity
state. The CPT theorem requires that for each state of helicity h, there must
be a CPT conjugate state of helicity −h. For spin j, you find the particle
state of helicity +j and the anti-particle state of helicity −j (or vice versa).
Two states for spins 1 and 2 already have CPT pairs. One state for spin 1/2
must be accompanied with its anti-particle state (Weyl fermion).

The Pauli–Lubanski vector is

W µ =
1

2
εµνρσPνMρσ =

1

2
E(εµ0ρσMρσ − εµ1ρσMρσ). (13)

Therefore,

W 0 = −EJ1, W 1 = −EJ1, W 2 = −EJ2−EM03, W 3 = −EJ3+EM02.
(14)

Because Ki = M0i−M1i = 0, we find W 2 = W 3 = 0, and hence W µWµ = 0.

(c) Tachyonic case

A particle with negative mass-squared P 2 = −µ2 < 0 is said to be a tachyon.
It should not exist because of the causality. The dispersion relation is E =√
~p2 − µ2. Remember the group velocity of a wave is given by

~vg =
∂ω

∂~k
=
∂E

∂~p
=

~p√
~p2 − µ2

> c. (15)

It propagates faster than the speed of light. We don’t want it, we don’t need
it. The rest of the discussion is therefore completely academic.

Nonetheless one can ask a mathematical question if there is any finite-
dimensional unitary representation for a tachyon. For this purpose, we again
fix the reference frame and take P µ = (0, · · · , 0, µ). The little group that
does not change this momentum is SO(D−2, 1) generated by Mµν for µ, ν =
0, · · · , D−2. This is a non-compact group and hance unitarity representations
are in general infinite-dimensional.
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Like in the massless case, we can try to set non-compact generators M0i

to zero. The problem here, unlike in the massless case, is that [M0i,M0j] =
−iM ij and hence M0i = 0 implies also M ij = 0. Therefore, all generators
vanish identically and the representation is trivial. Namely that a scalar
(spinless) state is the only possible finite-dimensional unitarity representation
of the little group.

You may complain that you can add just a negative mass-squared to a
vector field (Maxwell Lagrangian). The point is that the condition ∂µA

µ = 0
is satisfied for A0 for our choice of P µ = i∂µ = (0, · · · , 0, µ). However, the
state created by A0 has the negative metric and hence this is not a unitary
representation. This is not something you can “gauge it away” because it is
a part of the irreducible representation of the little group.

3 Field Theory

What field you should use to write down a quantum field theory for a particle
of given spin relies on finite-dimensional and non-unitary representation of
the Poincaré symmetry. This is in stark contrast with infinite-dimensional
and unitary representation of the Poincaré symmetry on the Hilbert space.
The challenge is to find a suitable realization on fields whose quantization
yields the desired representation on the Hilbert space.

First of all, a quantum field (by definition) is a function of spacetime and
hence the translation generators act as space-time derivatives

Pµφ
a(x) = i∂µφ

a(x). (16)

Here, φa(x) is a generic field, possibly multi-component. Therefore, the trans-
lations are taken into account already, and what remains is just the Lorentz
transformations SO(D − 1, 1). What we look for then is finite-dimensional
representations of SO(D−1, 1) so that we don’t need to deal with an infinite-
component field. This is a very different requirement from what we discussed
about the Poincaré symmetry on the Hilbert space. This mismatch between
the representations on the fields and the Hilbert space is what will force us
to consider gauge symmetries later on.

Finite-dimensional representations of SO(D−1, 1) are obtained basically
by Wick rotations of SO(D) representations. They are not unitary, because
the boost generators are represented by the anti-hermitian generators, but
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linear and finite-dimensional by definition. Therefore, we first discuss rep-
resentation theory of SO(4) before we get to SO(3, 1) which is what we are
really after.‖

The SO(4) group has six generators Mij, i, j = 1, 2, 3, 4. The Wick rota-
tion from the Minkowski space with the metric gµν = diag(+1,−1,−1,−1)
by x0 = ix4 gives us gij = −δij. One unique aspect of SO(4) is that its Lie
algebra decouples into two pieces, namely SO(4) = SU(2)×SU(2).∗∗ Let us
work them out explicitly.

We know three of the generators very well: Jx = M23, Jy = M31, Jz = M12

with their usual commutation relations. Let us define Ki = Mi4, where
i = 1, 2, 3. Using the commutation relations Eq. (2) with gµν = −δµν in the
Euclidean space, it is easy to verify

[Jk, Jl] = iεklmJm, [Jk, Kl] = iεklmKm, [Kk, Kl] = iεklmJm. (17)

Now we define new generators J+
i = (Ji +Ki)/2 which satisfy

[J+
k , J

+
l ] =

1

4
[Jk+Kk, Jl+Kl] =

1

4
iεklm(Jm+Km+Km+Jm) = iεklmJ

+
m. (18)

Similarly for J−i = (Ji −Ki)/2,

[J−k , J
−
l ] =

1

4
[Jk−Kk, Jl−Kl] =

1

4
iεklm(Jm−Km−Km+Jm) = iεklmJ

−
m. (19)

We can also check that J+
i and J−i commute,

[J+
k , J

−
l ] =

1

4
[Jk +Kk, Jl −Kl] =

1

4
iεklm(Jm −Km +Km − Jm) = 0. (20)

This way, we have verified that the Lie algebra of SO(4) is nothing but two
commuting sets of SU(2). Therefore, the representations are given simply
by assigning two “spins” (j1, j2) for each SU(2) factors and the dimension of
the representation space is (2j1 +1)(2j2 +1). In any of these representations,
J+
k and J+

k are represented as hermitean matrices and so are Jk and Kk.

‖The discussion in this section is essentially a solution to Problem 3.1 in the book.
Again notations are different; I’m sorry!
∗∗Strictly speaking, SO(4) = (SU(2) × SU(2))/Z2 where Z2 acts as the diagonal sub-

group of the Z2 centers of each SU(2) factors. This subtlety with global properties
of the group does not affect representation theory of the Lie algebra, which relies only
on local information around the origin. In fact, the spinor representations are those of
Spin(4) = SU(2)× SU(2), the double cover of SO(4).
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The representations of SO(3, 1) are obtained by the simple Wick rotation
x4 = −ix0. This gives us the identification Ki = Mi4 = −iMi0 = iM0i.
Even though M0i are symmetry generators, they are now represented by the
anti-hermitean matrices −iKi.

Obviously the smallest representations are (1
2
, 0) and (0, 1

2
). They are

the spin 1/2 representations for right-handed and left-handed chiralities. For
the representation (1

2
, 0), J−i = 0, and hence Ki = Ji. On the other hands,

J+
i = (Ji + Ki)/2 = σi/2, where σi are Pauli matrices. In other words, the

generators are represented by

Mij = εijkJk =
σk
2
, M0i = −iKi = −iσi

2
. (21)

For the other representation (0, 1
2
), we flip the signs of Ki and hence Ki =

−Ji,
Ji =

σi
2
, M0i = −iKi = +i

σi
2
. (22)

and hence it is nothing but the hermitean conjugate of the representation
(1

2
, 0). This is not a paradox. For compact Lie groups the representations are

unitary and hence the generators are hermitean. On the other hand for non-
compact groups, the generators are not represented by hermitean matrices
(and hence the representations are not unitary) and different representations
can be related by taking hermitean conjugation.††

A rotation matrix is given by

R(~θ) = ei
~J ·~θ = ei~σ·

~θ/2 = cos
θ

2
+ i

~σ · ~θ
θ

sin
θ

2
(23)

as usual. It rotates the system around the axis ~θ by the angle θ = |~θ|. Note
that this is common to both (1

2
, 0) and (0, 1

2
), and hence we can see how

the Lorentz group reduces to the spatial rotation by dropping the distinction
between the two.

A Lorentz boost, on the other hand, is given by

B(~η) = e−iM0iηi = e−i(−i
~K)·~η = e±~σ·~η/2 = cosh

η

2
± ~σ · ~η

η
sinh

η

2
. (24)

††See Lecture notes on the Clifford algebra for more discussions about how different
representations are related to each to other by various kinds of conjugations.
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It boosts the system along the direction ~η by the rapidity η = ~η. (The
rapidity is defined by cosh η = γ = 1/

√
1− β2, sinh η = γβ for Lorentz

boosts.) The signs ± refer to (1
2
, 0) and (0, 1

2
) representations, respectively.

The combination of rotations and Lorentz boosts forms the group SL(2,C).
A “Special Linear” group is a group of matrices (by definition linear) of
unit determinant (special), and this one is defined on complex numbers C.
Namely, the Lie algebra of SO(3, 1) is equivalent to that of SL(2,C). It

is easy to verify that detR(~θ) = detB(~η) = 1 because the exponents are
traceless.

In order to describe a spin one particle, we look for representations that
contain spin one representation under the rotation group. A Lorentz vector
Aµ is given by the (1

2
, 1

2
) representation. Because the rotation is obtained

by dropping the distinction between two SU(2)’s, we find 1
2
⊗ 1

2
= 1 ⊕ 0.

Namely, a spin one component (the spatial components of a four-vector) and
a spin zero component (the time component of a four-vector). Therefore it is
a candidate for the description of spin one particles, and this is indeed what
we use in the gauge theories. The transformation property can be seen more
explicitly by using (1

2
, 0) ⊗ (0, 1

2
) = (1

2
, 1

2
). Suppose ξ transforms as (1

2
, 0).

Then ξ† transforms as (0, 1
2
). We form combinations

ξ†σµξ, σµ = (1, ~σ). (25)

Under the rotation Eq. (23) the time component does not change,

ξ†σ0ξ → ξ†R(~θ)†σ0R(~θ)ξ = ξ†σ0ξ, (26)

while the spatial components do change (we use {σi, σj} = 2δij and σiσj =
δij + iεijkσk)

ξ†σiξ → ξ†

[
cos

θ

2
− i~σ ·

~θ

θ
sin

θ

2

]
σi

[
cos

θ

2
+ i

~σ · ~θ
θ

sin
θ

2

]
ξ

= ξ†

[
cos

θ

2
− i~σ ·

~θ

θ
sin

θ

2

]([
cos

θ

2
− i~σ ·

~θ

θ
sin

θ

2

]
σi + 2i

θi

θ
sin

θ

2

)
ξ

= ξ†

([
cos θ − i~σ ·

~θ

θ
sin θ

]
σi + 2i

[
cos

θ

2
− i~σ ·

~θ

θ
sin

θ

2

]
θi

θ
sin

θ

2

)
ξ

= ξ†

(
σi cos θ − i(δij − iεijkσk)θ

j

θ
sin θ + i

θi

θ
sin θ + 2

~σ · ~θ
θ

θi

θ
sin2 θ

2

)
ξ
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= ξ†

(
σi cos θ − εijkσk θ

j

θ
sin θ +

~σ · ~θ
θ

θi

θ
(1− cos θ)

)
ξ

= ξ†
(
σj
[
θjθi

θ2
+

(
δij − θjθi

θ2

)
cos θ

]
− εijkσk θ

j

θ
sin θ

)
ξ. (27)

Therefore, the component parallel to ~θ remains unchanged, while the com-
ponents orthogonal to ~θ are rotated by the angle θ = |~θ|. If you want to see

it more explicitly, you can specialize it to, e.g., ~θ = (0, 0, θ), and identify the
usual rotation on the x-y plane. This way, we see that both time and spatial
components transform properly under rotation.

Under a Lorentz boost, the time component transforms as

ξ†σ0ξ → ξ†
[
cosh

η

2
+
~σ · ~η
η

sinh
η

2

]
σ0

[
cosh

η

2
+
~σ · ~η
η

sinh
η

2

]
ξ

= ξ†
[
σ0 cosh η +

~σ · ~η
η

sinh η

]
ξ. (28)

It leaves the time component boosted by cosh η, together with the spatial
component parallel to ~η by sinh η. The spatial components transform as

ξ†σiξ → ξ†
[
cosh

η

2
+
~σ · ~η
η

sinh
η

2

]
σi
[
cosh

η

2
+
~σ · ~η
η

sinh
η

2

]
ξ

= ξ†
[
cosh

η

2
+
~σ · ~η
η

sinh
η

2

]([
cosh

η

2
− ~σ · ~η

η
sinh

η

2

]
σi + 2

ηi

η
sinh

η

2

)
ξ

= ξ†
(
σi +

ηi

η
sinh η + σj

ηiηj

η2
(cosh η − 1)

)
ξ

= ξ†
(
σj
[(
δij − ηiηj

η2

)
+
ηiηj

η2
cosh η

]
+ σ0η

i

η
sinh η

)
ξ. (29)

It leaves the components orthogonal to ~η unchanged, while the parallel com-
ponent is boosted by cosh η together with the time component by sinh η.
Combining time and spatial components, they therefore transform as a Lorentz
four-vector as expected.

Similarly, out of χ in (0, 1
2
) representation, one can form a Lorentz four-

vector by
χ†σ̄µχ, σ̄µ = (1,−~σ). (30)
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The spinors ξ and χ are right-handed and left-handed chirality spinors writ-
ten in the two-component notation. This notation is used often in the study
of supersymmetry.

Another possible candidate for spin one particle is to use (1, 0) and (0, 1)
representations. We need both of them together because they are related by
hermitean conjugation. I do not show it explicitly here, but you can verify
that they correspond to field-strength tensors Fµν . There are six components
for them as opposed to four components for a Lorentz vector, and the de-
scription is more redundant. Indeed, we do not regard Fµν fundamental in
gauge theories and rather use the four-vector Aµ as fundamental variables to
describe spin one particles.

4 Gauge Symmetry

According to the discussion of the little group, massless spin one particle
has D − 2 degrees of freedom. The smallest field is a Lorentz vector Aµ

with D components. The only way to reconcile this discrepancy is the gauge
symmetry. It allows us to impose the Lorentz gauge condition ∂µA

µ = 0,
which further leaves an additional invariance Aµ → Aµ + ∂µχ if ∂2χ = 0. In
the momentum space, Aµ = εµ(k)e−ik·x for k2 = 0. Therefore, kµε

µ(k) = 0
and we can change εµ(k) → εµ(k) + kµχ. Choosing kµ = E(1, 1, 0, · · · , 0),
the Lorentz gauge condition requires ε0 = ε1. However the further gauge
transformation allows us to eliminate both ε0 = ε1. Then the remaining
non-vanishing components are ε2, · · · , εD−1, and hence there are only D − 2
degrees of freedom.

11


