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1 Symplectic Structure

In usual particle mechanics, the phase space is given by the coordinates qi

and their conjugate momenta pi, and its volume by

V =

∫ n∏
i=1

dpidqi. (1)

In some systems, however, the geometry of the phase space is not as simple.
In general, we are talking about symplectic manifolds.

A symplectic manifold M is an 2n-dimensional manifold that has a sym-
plectic structure, namely that it admits a two-form ω = 1

2
ωijdxi ∧ dxj

called the symplectic form. The symplectic form has the following prop-
erties: (1) Closed, namely dω = 0, (2) Non-degenerate, namely the matrix
ωij = −ωji is invertible. Because of the second property, detωij 6= 0, and
hence dV = 1

n!
ωn 6= 0, which is the volume form of the phase space,

V =

∫
dV =

∫
1

n!
ωn =

∫
(detωij)

2n∏
i=1

dxi. (2)

Because the symplectic form is non-degenerate, we can define the inverse

ωijωjk = δi
k. (3)

For the simple case above, the symplectic form is

ω =
n∑

i=1

(dpi ∧ dqi), (4)
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and the symplectic matrix is

ωij =



0 1 0 0 · · · · · · 0 0
−1 0 0 0 · · · · · · 0 0
0 0 0 1 · · · · · · 0 0
0 0 −1 0 · · · · · · 0 0
...

...
...

...
. . . . . .

...
...

...
...

...
...

. . . . . .
...

...
0 0 0 0 · · · · · · 0 1
0 0 0 0 · · · · · · −1 0


. (5)

One major restriction on symplectic manifolds, if compact, is that they
need to have non-trivial second cohomology to allow for a closed non-degenerate
two-form. Namely there is a two-dimensonal subsurface of the manifold that
is closed (two-cycle C2) on which the symplectic form can be integrated. This
puts an interesting requirement on the normalization of the symplectic form
as you will see in the next section. Kähler manifolds (complex manifolds of
U(N) holonomy) are all symplectic.

2 Hamiltonian

The Hamiltonian is a function on the phase space that generates the time
translation. For the particle mechanics, we have the Hamilton equations of
motion

dpi

dt
= −∂H

∂qi
(6)

dqi

dt
=

∂H

∂pi
. (7)

The generalization of them is

dxi

dt
= ωij ∂H

∂xj
(8)

Mathematicians like to talk about the Hamiltonian vector,

d

dt
= ωij ∂H

∂xj

∂

∂xi
. (9)
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3 Poisson Bracket

The Poisson brackets are defined using the inverse of the symplectic matrix
as

{A, B} = ωij ∂A

∂xi

∂B

∂xj
. (10)

For the conventional case of pi and qi, it reduces to the standard definition

{A, B} =
∂A

∂pi

∂B

∂qi
− ∂A

∂qi

∂B

∂pi
. (11)

Using this definition, it is easy to see that the Hamilton equations of
motion can be rewritten as

dxi

dt
= ωij ∂H

∂xj
= {xi, H}. (12)

4 Path Integral

The Lagrangian on the phase space is normally

L =
∑

i

piq̇i −H(p, q). (13)

It is the first term that dictates the canonical structure. Note that the time
integral of the first term is∫ ∑

i

piq̇idt =

∫ ∑
i

pidqi =

∫
χ, (14)

where the one-form χ =
∑

i p
idqi satisfies ω = dχ. This is true in general.

Because the symplectic form is closed dω = 0, one can always write it locally
exact ω = dχ.

In quantum mechanics, the action is exponentiated in the path integral,∫ ∏
t

n∏
i=1

(dqi(t)dpi(t))e
i
~

R
dt(

Pn
i piq̇i−H(p,q)). (15)

The generalization of this expression is∫ ∏
t

(
1

n!
ωn(t)

)
e

i
~ (

R
χ−

R
dtH). (16)
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For a closed path in the path integral, the integrand is

e
i

H
C1

χ/~
(17)

Here, C1 is the closed path in M . Using Stokes’ theorem, it can be rewritten
as

ei
R

D ω/~, (18)

where the disk D has the boundary ∂D = C1. An interesting point is that,
if M is compact, there are (at least) two disks D1 and D2 that cannot be
continuously deformed from each other because of the non-trivial two-cycle
C2. The path integral must be well-defined independent of which disk is
chosen. Note that the integral of ω does not change as the disk is continuously
deformed because dω = 0. D1 ∪D2 can be deformed to C2 and the integral
must satisfy

e
i

R
C2

ω/~
= 1 (19)

so that the path integral does not depend on the choice of the disk. Therefore,∫
C2

ω = 2πn~ (n ∈ Z). (20)

This requirement is supposed to hold for any non-trivial two-cyles in M . This
is analogous to the quantization condition of the monopole magnetic charge,
see E. Witten, “Global Aspects of Current Algebra,” Nucl. Phys. B223,
422-432 (1983).

5 Lagrangian

The Lagrangian submanifold is the generalization of the coordinate space
{qi}. The formal definition is that a submanifold L ⊂ M is Lagrangian if it
is an isotropic submanifold of dimension n, and the word isotropic means that
the symplectic form vanishes on the tangent space TL, namely ω(v1, v2) = 0
for ∀vi ∈ TL. Simply put, ω combines coordinates and monenta, and if you
pick only coordinates it vanishes.

We eliminate the rest of the coordinates from the phase-space Lagrangian
and go back to the usual Lagrangian written in terms of the coordinates alone.
In other words, we “integrate out” the canonical momenta from the path
integral and arrive at the coordinate-space path integral with the Lagrangian
which depends only on the canonical coordinates.
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6 Example of Two-Sphere

The simplest but non-trivial example of a compact phase space is a two-
dimensional sphere S2 = SU(2)/U(1). The symplectic form is nothing but
the surface area of the sphere,

ω = J sin θdφ ∧ dθ. (21)

It is trivially closed dω = 0 because there are no three-form on a two-
dimensional space, and non-degenerate because the symplectic matrix

ωij =

(
0 J sin θ

−J sin θ 0

)
(22)

is invertible. The Poisson bracket is

{A, B} = − 1

J sin θ

(
∂A

∂φ

∂B

∂θ
− ∂A

∂θ

∂B

∂φ

)
. (23)

The symplectic form is locally exact

ω = dχ = d(J cos θdφ) (24)

and hence one can write the Lagrangian

L = J cos θφ̇−H(θ, φ). (25)

The consistency of the path integral requires∫
S2

ω = 2π~N, (26)

and hence J = j~ where j = N/2 is a half-integer.
The quantum mechanics of this phase space gives rise to the standard

representation of SU(2). For more details, consult “Models of spin,” a mis-
cellaneous note I wrote for 221A.

This is the simplest case of the general groups as briefly summarized in
the next section.
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7 General G/T

For a simple compact group G, and its maximal torus T (the abelian subgroup
generated by its Cartan generators), the coset space G/T is Kähler, and hence
symplectic. The quantum mechanism on the phase space G/T gives a Hilbert
space of a representation of G, depending on what symplectic form is chosen.
If the rank of the group G is r, T ' U(1)r. Using the exact sequence of
homotopy groups,

0 = π2(G) → π2(G/T ) → π1(T ) = Zr → π1(G) = 0 → π1(G/T ) → π0(T ) = 0,
(27)

we find
π2(G/T ) = Zr, π1(G/T ) = 0. (28)

Because π1 vanishes, H2(G/T ) = π2(G/T ) = Zr, and hence there are r
independent non-trivial two-cycles. On each of the two-cycle, we can as-
sociate an exact two-form which is quantized to obtain well-defined path
integral. Thereore the symplectic form is a sum of unit two-forms with in-
teger coefficients, which is equivalent to specifying the heightest weight of a
representation as a sum of r fundamental weights with integer coefficients.
The wave functions of the Hilbert space are given by the holomorphic sec-
tions of the complex line bundle whose first Chern character is the symplectic
form. These wave functions form the representation of the group G. This is
a consequence of the Borel–Bott–Weil theorem.

In general, the procedure called “geometric quantization” is to build a
complex line bundle on M whose first Chern character is the symplectic
form. Then the vector space of holomorphic sections is the Hilbert space of
the quantum mechanics on the phase space M .
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