129A HW # 9 (due Dec 1)

- 1. Using a luminosity of an e^+e^- collider $\mathcal{L} = 10^{31} \text{ cm}^{-2} \text{ sec}^{-1}$ and center-ofmomentum energy $\sqrt{s} = 60 \text{ GeV}$, calculate the number of events per hour for the final states $\mu^+\mu^-$, $u\bar{u}$, $d\bar{d}$, and all hadrons (the sum of $u\bar{u}$, $d\bar{d}$, $s\bar{s}$, $c\bar{c}$ and $b\bar{b}$). (Assume the dominance of *s*-channel photon exchange process. In reality, the *Z*-boson exchange is also important, but you don't need to include it.)
- 2. The confining linear potential.
 - (a) Identify the lightest mesons with S = 0, I = 0 and $J^P = 1^-$, 2^+ , 3^- , and 4^+ in the booklet. Plot them with their mass squared in GeV² along the horizontal and their spin the vertical axes.
 - (b) Identify the lightest mesons with S = 0, I = 1 and $J^P = 1^-$, 2^+ , and 3^- in the booklet. Plot them with their mass squared in GeV² along the horizontal and their spin the vertical axes. Also find the lightest mesons with I = 1 and $J^P = 0^-$, 1^+ , and 2^- , and plot them together with the others.
 - (c) Identify the lightest mesons with S = 1, I = 1/2 and $J^P = 1^-$, 2^+ , 3^- , and 4^+ , and plot them. Also find the lightest mesons with S = 1, I = 1/2 and $J^P = 0^-$, 1^+ , and 2^- , and plot them.
 - (d) Using the semi-classical analysis of a relativistic particle in the linear potential

$$H = cp + \frac{1}{\alpha'}r,\tag{1}$$

argue that there is a linear relation between the spin $J = rp/\hbar$ and mass squared $(H/c^2)^2$. Here, the parameter α' has a dimension of Length/Energy and is called the string tension. You can use the natural unit $\hbar = c = 1$.