
Cross section, Decay Rate, Phase Space, Amplitude

Below, the natural unit h̄ = c = 1 is used throughout.
Lorentz-invariant phase space:

∫
dΦn =

∫ n∏
i

(
d3~pi

(2π)32Ei

)
(2π)4δ4(

n∑
i

pi − P ). (1)

Here, Ei =
√
~p2
i +m2

i is the energy of the particle i of mass mi. Each particle has
four-momentum pµi = (Ei, ~pi). The total four-momentum of the n-body system is
P µ.
Feynman Amplitude from the initial state i at t = −∞ to the final state f at
t =∞:

M(i→ f)(2π)4δ4(
n∑
i

pi − P ) = 〈f, t = +∞|i, t = −∞〉 = lim
T→∞
〈f |e−iHT |i〉. (2)

The convention is determined by the normalization of single particle states:

〈~p1|~p2〉 = (2π)32Eδ3(~p1 − ~p2). (3)

This normalization has an advantage of being Lorentz-invariant.
Differential Partial Decay Rate of a particle of mass M to the n-body final state
f :

dΓ(i → f) =
1

2M
|M(i→ f)|2dΦn, (4)

where M(i → f) is the amplitude from the one-particle initial state i with four-
momentum P µ = M(1, 0, 0, 0) in its rest frame to the n-body final state f . Partial
Decay Rate (probability of decay of the particle in a particular decay mode per
unit time) is obtained upon phase space integral:

Γ(i→ f) =
1

2M

∫
|M(i→ f)|2dΦn. (5)

Total Decay Rate of a particle:

Γi =
∑
f

Γ(i→ f), (6)

where all possible decay modes are summed up. The lifetime of the particle is
given by

τi =
1

Γi
. (7)



One sometimes refers to a “partial lifetime” (a strange terminology),

τ (i→ f) =
1

Γ(i→ f)
. (8)

Branching Fraction into a specific decay mode f is given by

BR(i→ f) =
Γ(i→ f)

Γi
=

τi
τ (i→ f)

. (9)

From N0 of the particle i at rest at t = 0, the remaining number of the particle at
an arbitrary time t > 0 is given by

N(t) = N0e
−Γit = N0e

−t/τi. (10)

If the particle is moving, there is time dilation effect and the decay is corresondingly
delayed: e−γt/τi with γ = E/M .
Differential Cross Section (two-body to n-body):

dσ(i→ f) =
1

2sβ̄i
|M(i→ f)|2dΦn, (11)

where s = (k1 + k2)
2, kµ1 and kµ2 are four-momenta of initial state particles 1 and

2,M(i→ f) is the amplitude from the initial state i with particles 1 and 2 to the
n-body final state f , and β̄i is defined by

β̄i =
√

1− 2(x1 + x2) + (x1 − x2)2 (12)

with x1 = k2
1/s = m2

1/s, x2 = k2
2/s = m2

2/s. β̄i coincides with the velocity of
the initial state particles β in the center-of-momentum frame if m1 = m2. Cross
section (number of the scattering events per unit luminosity per unit time) is
obtained upon phase space integral:

σ(i→ f) =
1

2sβ̄i

∫
|M(i→ f)|2dΦn. (13)

Two-body phase space can be written in a particularly simple manner in the
center-of-momentum frame:

dΦ2 =
β̄f
8π

d cos θ

2

dφ

2π
, (14)

where θ, φ are polar and azimuthal angles of the momentum ~p1 in the center-of-
momentum frame, respectively, and β̄f is the analogous expression of Eq. (12) for
the final state particles.


