Cross section, Decay Rate, Phase Space, Amplitude

Below, the natural unit » = ¢ = 1 is used throughout.
Lorentz-invariant phase space:
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Here, E; = \/p? +m? is the energy of the particle i of mass m;. Each particle has
four-momentum pf’ = (E;, p;). The total four-momentum of the n-body system is
P,
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Feynman Amplitude from the initial state ¢ at ¢ = —oo to the final state f at
t =00
M(i — f)(2m)*o? sz = (f,t = +ooli,t = —00) = Tlim (fle”™ T3y, (2)

The convention is determined by the normalization of single particle states:
(D1]p2) = (27T)32E53(171 — Pa). (3)

This normalization has an advantage of being Lorentz-invariant.
Differential Partial Decay Rate of a particle of mass M to the n-body final state

f:
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where M(i — f) is the amplitude from the one-particle initial state ¢ with four-
momentum P* = M (1,0,0,0) in its rest frame to the n-body final state f. Partial

Decay Rate (probability of decay of the particle in a particular decay mode per
unit time) is obtained upon phase space integral:
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Total Decay Rate of a particle:
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where all possible decay modes are summed up. The lifetime of the particle is
given by



One sometimes refers to a “partial lifetime” (a strange terminology),
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Branching Fraction into a specific decay mode f is given by
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From Ny of the particle ¢ at rest at t = 0, the remaining number of the particle at
an arbitrary time ¢ > 0 is given by

N(t) = Noe it = Nye /™. (10)

If the particle is moving, there is time dilation effect and the decay is corresondingly
delayed: e /7 with v = E/M.
Differential Cross Section (two-body to n-body):
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where s = (k1 + ko)?, kI' and k4 are four-momenta of initial state particles 1 and
2, M(i — f) is the amplitude from the initial state i with particles 1 and 2 to the
n-body final state f, and 3; is defined by

Bi = \/1 — 2(33'1 + 33'2) + (.1'1 — 33'2)2 (12)

with o1 = k2/s = m2/s, 29 = k2/s = m2/s. [3; coincides with the velocity of
the initial state particles  in the center-of-momentum frame if m; = my. Cross
section (number of the scattering events per unit luminosity per unit time) is
obtained upon phase space integral:
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Two-body phase space can be written in a particularly simple manner in the
center-of-momentum frame:
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where 0, ¢ are polar and azimuthal angles of the momentum pj in the center-of-
momentum frame, respectively, and [y is the analogous expression of Eq. (12) for
the final state particles.



