Feynman Rules for QED

The Feynman rules:

1.

2.

Initial state electron (or particle in general): u(p).
Final state electron (or particle in general): u(p).
Initial state positron (or anti-particle in general): v(p).

Final state positron (or anti-particle in general): v(p).
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Photon propagator: 5
q
1
Electron propagator: ——, where p = 7*p,,.
p—m
Electron-photon vertex: —ie@y* with () = —1. For general particles, change

() appropriately.

Conserve four-momenta at every vertices.



eet — ppt
The Feynman amplitude for e~ (k), et (k) — pu~(p)u*(p). k, k, p, p denote the
four-momenta of initial and final state particles. The process goes through the
s-channel photon exchange, i.e.., e"et annihilate into a photon by a vertex iey*,
then the photon “progagates” with the propagator —ig,,/¢*> with ¢* = (k+k)* =
(p+p)*, and the photon converts to u~ ™ by another vertex iey”. Therefore, the
amplitude is given by

LM—mmww>@‘?t@wmeu (1)

We first simplify it to

2 —

M = Za(p) o (RN uk). 2

where s = ¢? is the squared center-of-momentum energy.
Now we calculate the amplitude explicitly. We fix the reference frame to the
center-of-momentum frame of the collision, with four-momenta
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k= FB(1,0,0,1),
k= E(1,0,0,—1),
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pt = E(1,sinf cos¢,sinf sin ¢, cosh),
P = E(1,—sinfcos ¢, —sinfsin ¢, — cosb),

A~ N /N o/
(@)

with E = /s/2. Here and below, we neglect the masses completely which is valid
it £> m.

Let us first consider the case of epef — ugpuj, where the subscript R refers to
the helicity +1/2 state and L to —1/2 state. The initial state electron is described
by the wave function u, (k), and since the four-momentum k* is given by 6 = 0,
¢ =0, we find
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Here and below, we use the relativistic formula £ = Vk? +m? = k for massless
particles. The initial state positron is described by the wave function v_ (k). Since
the four-momentum k is given by § = m, ¢ = 7 (the choice of ¢ is arbitrary if



6 = 0 or 7; the ambiguity in ¢ results in an ambiguity in the overall phase of the
amplitude, which is unphysical). The wave function is given by
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v (k) = —— ( g{j’% ) ~VE| | (8)
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Then the combination v(k)y*u(k) can be calculated just by a matrix algebra.
Recall that v = vT7?, and 1°7° = 1, 4%4% = o for i = 1,2, 3. Therefore,

U- (k) ur (k) = v-(k)Tui(k) =0, (9)

o (Fyus(k) = o () aiuy (k) = 2B(0,—1)o" ( ; ) , (10)

and we find

o_(R)y*us (k) = 2B(0, -1, i, 0). (11)
For the final state particles, we use the wave function
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and for p, we substitute § — 7 —60, ¢ — ¢ + m,
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Now we can calculate the combination u(p)y”v(p) necessary for the amplitude.

i (p) v () = u(p)lo_() =0, (14)

U (p)”yiv (p) = u (p)To/v (p) = 2E(cos€ singe_i‘z’)ai sing ~ (15)
+ - + - 27792 — cos g e

and we find

0 . 0 . 0 . 0 . 0
uy (p)y v_(p) = 2E(0, — cos? 56’¢+sin2 ie_z‘z’, i cos® iez‘z’—i—i sin? §€_Z¢, 2 cos 2 81(?65))



Putting pieces together, we find the amplitude (2):
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= —e*(1+ cosf)e™. (17)

Note that the contraction of the Lorentz index p requires a negative sign for
all spatial components. The 6 dependence of the amplitude makes a good sense.
Because we started with e and e} along the z-axis, the initial state has a total spin
of +1 along the positive z-axis. On the other hand, the final state upu;f has also
a total spin of +1 along the (0, ¢) direction. The angular momentum conservation
forbids @ = m which makes the final state spin point to the negative z-axis, where
the amplitude indeed vanishes. The amplitude is the largest when the final state
spin points to the same direction as the initial state, 8§ = 0. The ¢ dependence
of the amplitude is only in its phase. Since the cross section is proportional to
the amplitude absolute squared, there remains no ¢ dependence. This is expected
because the collision of particles along the z axis is axially symmetric. In any
case, this completes the calculation of the amplitude for this particular helicity
combination.

For the helicity combination e} e}, — puguy, the only changes are in the initial
state wave functions. We now have
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This gives
vy (K)y*u_(k) = 2E(0, 1, —i,0). (19)

We can reuse Eq. (16) for the final state part of the amplitude. We find the
amplitude to be
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= —e*(1 —cosf)e™. (20)

Again the angular dependence can be intuitively understood in terms of angular
momentum conservation.



For the helicity combinations u; uk, we find

6 _, 6 , 0 _, 0 .
i (p)y" vy (p) = 2E(0, cos® ie_z‘z’—sin2 —¢ i cos? —e " tisin® —e'® —2cos ~ sin 5)
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Then for ezef — py pu}, the amplitude is
e? ,
M = ——(1—cosh)e”, (22)
s
and for ey e} — py pg, the amplitude is
e? ,
M= ——(1+cosf)e ™. (23)
s

Other helicity combinations such as epef, eref, urih, UL pf give vanishing
amplitudes. This can be easily checked, and is a consequence of the “chirality
conservation” which is true in the massless limit.

The four amplitudes, (17), (20), (22), and (23), are the only non-vanishing
ones. In order to obtain the cross section, we use the general formula
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In our case of massless initial state particles, 3; = 0, and we need only the two-body
phase space,

B B dcost de
81 2 271
We have Bf = 1 for the massless muons. For typical ring eTe™ colliders, both
electron and positron beams are not polarized. Therefore, we need to average the
helicities +1/2 and —1/2 with 50:50 ratio. This average is done both for electron
and positron. On the other hand, we are interested in the total production cross
section of utp~ and we just sum their helicities over. Then we find

d®, (25)
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The prefactor 1/4 is from the helicity average. The sum of squared amplitudes is
4e*(1 4 cos?f), and the ¢ integral is trivial, [ d¢/2m = 1. The total cross section
is obtained upon cos @ integral,
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It is conventional to rewrite e in terms of the fine structure constant o = €2 /4w,

and we find )
ole et - pupt) = dma’, (28)
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For production of Dirac particles ff other than muons, we change the vertex
tey” for the muon to —ie@y” with charge ¢ of the particle, and we multiply
the cross section by the appropriate multiplicities, e.g., number of colors N.. The

general formula then reads as
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et ) = T 92N, 29
sl 1= 2T (29)
If the final state particle has spin 0 rather than 1/2 (Dirac), we instead have
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ole et — ff) = gTQ?NC (30)

The angular distribution is also different, sin? @ rather than 1 + cos?§, which can
be understood in terms of angular momentum conservation again.



