129B Solutions to HW #3

Problem 1.

Consider the Dirac equation with the vector potential A_{μ} :

$$[i\gamma^{\mu}(\partial_{\mu}-ieQA_{\mu})-m]\psi=0$$

Under the gauge transformation

$$\begin{split} &[i\,\gamma^{\mu}\,(\partial_{\mu}-i\,e\,Q\,A_{\mu})-m]\,\psi \xrightarrow{\psi \to \psi',A \to A'} [i\,\gamma^{\mu}\,(\partial_{\mu}-i\,e\,Q\,(A_{\mu}+\partial_{\mu}\,\chi))-m]\,e^{ieQ\chi}\,\psi = \\ &i\,\gamma^{\mu}\,\partial_{\mu}\,(e^{ieQ\chi}\,\psi) + [i\,\gamma^{\mu}\,(-i\,e\,Q\,(A_{\mu}+\partial_{\mu}\,\chi))-m]\,e^{ieQ\chi}\,\psi = \\ &i\,\gamma^{\mu}\,e^{ieQ\chi}\,(i\,e\,Q\,\partial_{\mu}\,\chi)\,\psi + i\,\gamma^{\mu}\,e^{ieQ\chi}\,\partial_{\mu}\psi + [i\,\gamma^{\mu}\,(-i\,e\,Q\,(A_{\mu}+\partial_{\mu}\,\chi))-m]\,e^{ieQ\chi}\,\psi = \\ &i\,\gamma^{\mu}\,e^{ieQ\chi}\,\partial_{\mu}\psi + [i\,\gamma^{\mu}\,(-i\,e\,Q\,A_{\mu})-m]\,e^{ieQ\chi}\,\psi = e^{ieQ\chi}[i\,\gamma^{\mu}\,(\partial_{\mu}-i\,e\,Q\,A_{\mu})-m]\,\psi = 0 \end{split}$$

The original Dirac equation (with no A_{μ} field) is invariant under the *global* gauge transformation, i.e. the transformation $\psi \longrightarrow \psi' = e^{ieQ\chi} \psi$, where χ is independent of x^{μ} . If χ is different for different space-time points, an additional term arises when the derivative operator hits χ . To keep the equation invariant in this case, one introduces the A_{μ} field and postulates that it transforms in such a way as to exactly cancel the $\partial_{\mu} \chi$ term.

Problem 2.

Below are the plots showing the shape of the potential in two cases: $T > T_c$ and $T < T_c$. In the first case, the minimum is at the origin and the ground state does not break the symmetry. In the second case, however, any of the points on the circle $M_1^2 + M_2^2 = (T_c - T)/(2\lambda)$ can be a ground state. This means that below T_c the material becomes spontaneously magnetized, and the direction of the magnetization is random. Thus, a perfectly symmetric potential can yield a symmetry-breaking ground state.

 $(T-T_c=1,\ \lambda=1)$

 $(T-T_c=-2,\ \lambda=1)$

Optional

Consider the Dirac equation for the left-handed electron - neutrino doublet:

$$\begin{split} \left[i\,\gamma^{\mu}\,(\partial_{\mu}-i\,g_{2}\,(T^{(a)})_{i\,j}\,W^{(a)}_{\mu})-m\right]\psi_{j} &= \left[i\,\gamma^{\mu}\left(\partial_{\mu}-i\,g_{2}\,\frac{(\sigma^{(a)})_{ij}}{2}\,W^{(a)}_{\mu}\right)-m\right]\psi_{j} = \\ \left[i\,\gamma^{\mu}\left(\partial_{\mu}-i\,g_{2}\,\frac{1}{2}\left(\begin{pmatrix}0&1\\1&0\end{pmatrix}W^{1}_{\mu}+\begin{pmatrix}0&-i\\i&0\end{pmatrix}W^{2}_{\mu}+\begin{pmatrix}1&0\\0&-1\end{pmatrix}W^{3}_{\mu}\right)\right)-m\right]\binom{\nu}{e} = \\ \left[i\,\gamma^{\mu}\left(\partial_{\mu}-i\,g_{2}\,\frac{1}{2}\left(\begin{matrix}W^{3}_{\mu}&W^{1}_{\mu}-iW^{2}_{\mu}\\W^{1}_{\mu}+iW^{2}_{\mu}&-W^{3}_{\mu}\end{matrix}\right)\right)-m\right]\binom{\nu}{e} = \\ \left[i\,\gamma^{\mu}\left(\partial_{\mu}-i\,g_{2}\,\frac{1}{2}\left(\begin{matrix}W^{3}_{\mu}&\sqrt{2}\,W^{+}_{\mu}\\\sqrt{2}\,W^{-}_{\mu}&-W^{3}_{\mu}\end{matrix}\right)\right)-m\right]\binom{\nu}{e} \end{split}$$

The off-diagonal terms $\sqrt{2} W_{\mu}^{\pm}$ connect the electron and neutrino states. The diagonal terms $\pm W_{\mu}^{3}$ look like the A_{μ} vector in Problem 1, but implies the incorrect assign charge assignments of 1 and -1 to the neutrino and electron correspondingly and, hence, cannot be identified with the photon.

There can be other reasons why W^3_{μ} cannot be the photon. For example, it couples to W^{\pm}_{μ} through the non-Abelian interaction, and the strenth of that interaction is given by the weak coupling constant g_2 , which is larger than the electric charge e (See HW #2). You can, however, try to save the situation by assuming that W^3_{μ} makes only part of the photon: $A_{\mu} = \sin\theta W^3_{\mu} + \cos\theta B_{\mu}$, and the other part B_{μ} does not couple to W^{\pm}_{μ} . Then the coupling strength would be given by $g_2 \sin\theta$, which you can then try to identify with the elementary electric charge e. Remarkably, this is exactly how the Nature chooses to do it!