129B Solutions to HW #3

Problem 1.

Consider the Dirac equation with the vector potential A_μ :

$$
[i\,\gamma^{\mu}\,(\partial_{\mu}-i\,e\,Q\,A_{\mu})-m]\,\psi=0
$$

Under the gauge transformation

$$
[\boldsymbol{i}\,\gamma^{\mu}\,(\partial_{\mu}-\boldsymbol{i}\,e\,Q\,A_{\mu})-m]\,\psi \xrightarrow{\psi\to\psi',A\to A'} [\boldsymbol{i}\,\gamma^{\mu}\,(\partial_{\mu}-\boldsymbol{i}\,e\,Q\,(A_{\mu}+\partial_{\mu}\,\chi))-m]\,e^{i\mathrm{e}Q\chi}\,\psi =
$$
\n
$$
\boldsymbol{i}\,\gamma^{\mu}\,\partial_{\mu}(e^{i\mathrm{e}Q\chi}\,\psi) + [\boldsymbol{i}\,\gamma^{\mu}\,(-\boldsymbol{i}\,e\,Q\,(A_{\mu}+\partial_{\mu}\,\chi)) - m]\,e^{i\mathrm{e}Q\chi}\,\psi =
$$
\n
$$
\boldsymbol{i}\,\gamma^{\mu}\,e^{i\mathrm{e}Q\chi}\,(\boldsymbol{i}\,e\,Q\,\partial_{\mu}\,\chi)\,\psi + \boldsymbol{i}\,\gamma^{\mu}\,e^{i\mathrm{e}Q\chi}\,\partial_{\mu}\,\psi + [\boldsymbol{i}\,\gamma^{\mu}\,(-\boldsymbol{i}\,e\,Q\,(A_{\mu}+\partial_{\mu}\,\chi)) - m]\,e^{i\mathrm{e}Q\chi}\,\psi =
$$
\n
$$
\boldsymbol{i}\,\gamma^{\mu}\,e^{i\mathrm{e}Q\chi}\,\partial_{\mu}\,\psi + [\boldsymbol{i}\,\gamma^{\mu}\,(-\boldsymbol{i}\,e\,Q\,A_{\mu}) - m]\,e^{i\mathrm{e}Q\chi}\,\psi = e^{i\mathrm{e}Q\chi}[\boldsymbol{i}\,\gamma^{\mu}\,(\partial_{\mu}-\boldsymbol{i}\,e\,Q\,A_{\mu}) - m]\,\psi = 0
$$

The original Dirac equation (with no A_μ field) is invariant under the *global* gauge transformation, i.e. the transformation $\psi \to \psi' = e^{i\epsilon\mathrm{Q}\chi} \psi$, where χ is independent of x^μ . If χ is different for different space-time points, an additional term arises when the derivative operator hits χ . To keep the equation invariant in this case, one **introduces the** *A*^{μ} field and postulates that it transforms in such a way as to exactly cancel the $\partial_{\mu} \chi$ term.

Problem 2.

Below are the plots showing the shape of the potential in two cases: $T > T_c$ and $T < T_c$. In the first case, the **minimum is at the origin and the ground state does not break the symmetry. In the second case, however, any of** the points on the circle $M_1^2 + M_2^2 = (T_c - T)/(2 \lambda)$ can be a ground state. This means that below T_c the material **becomes spontaneously magnetized, and the direction of the magnetization is random. Thus, a perfectly symmetric potential can yield a symmetry-breaking ground state.**

 $(T - T_c = 1, \lambda = 1)$

 $(T - T_c = -2, \lambda = 1)$

Optional

Consider the Dirac equation for the left-handed electron - neutrino doublet:

$$
[\vec{i}\,\gamma^{\mu}\,(\partial_{\mu}-\vec{i}\,g_{2}\,(T^{(a)})_{i\,j}\,W_{\mu}^{(a)})-m]\,\psi_{j} = [\vec{i}\,\gamma^{\mu}\left(\partial_{\mu}-\vec{i}\,g_{2}\,\frac{(\sigma^{(a)})_{ij}}{2}\,W_{\mu}^{(a)}\right)-m]\,\psi_{j} =
$$

$$
[\vec{i}\,\gamma^{\mu}\left(\partial_{\mu}-\vec{i}\,g_{2}\,\frac{1}{2}\left(\begin{pmatrix}0&1\\1&0\end{pmatrix}W_{\mu}^{1}+\begin{pmatrix}0&-i\\i&0\end{pmatrix}W_{\mu}^{2}+\begin{pmatrix}1&0\\0&-1\end{pmatrix}W_{\mu}^{3}\right)\right)-m]\begin{pmatrix}V\\e\end{pmatrix} =
$$

$$
[\vec{i}\,\gamma^{\mu}\left(\partial_{\mu}-\vec{i}\,g_{2}\,\frac{1}{2}\left(\begin{pmatrix}W_{\mu}^{3}&W_{\mu}^{1}-iW_{\mu}^{2}\\W_{\mu}^{1}+iW_{\mu}^{2}&-W_{\mu}^{3}\end{pmatrix}\right)-m]\begin{pmatrix}V\\e\end{pmatrix} =
$$

$$
[\vec{i}\,\gamma^{\mu}\left(\partial_{\mu}-\vec{i}\,g_{2}\,\frac{1}{2}\left(\begin{pmatrix}W_{\mu}^{3}&\sqrt{2}\,W_{\mu}^{+}\\ \sqrt{2}\,W_{\mu}^{-}&-W_{\mu}^{3}\end{pmatrix}\right)-m]\begin{pmatrix}V\\e\end{pmatrix}
$$

The off-diagonal terms $\sqrt{2}$ W^{\pm}_{μ} connect the electron and neutrino states. The diagonal terms $\pm W^3_{\mu}$ look like the A_{μ} **vector in Problem 1, but implies the incorrect assign charge assignments of 1 and -1 to the neutrino and electron correspondingly and, hence, cannot be identified with the photon.**

There can be other reasons why W^3_μ cannot be the photon. For example, it couples to W^\pm_μ through the non-Abelian interaction, and the strenth of that interaction is given by the weak coupling constant g_2 , which is larger than the electric charge e (See HW #2). You can, however, try to save the situation by assuming that W_μ^3 makes only part of the photon: A_μ = sin $\theta\,W_\mu^3$ + cos $\theta\,B_\mu$, and the other part B_μ does not couple to W_μ^\pm . Then the coupling strength would be given by g_2 sin θ , which you can then try to identify with the elementary electric charge e. Remarkably, this is exactly how the Nature chooses to do it!